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Classifiers as spam filters 
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Problem with Classifiers 

User cannot provide labels for all messages 

 

Solution :  

Minimize manual labeling → Active Learning 

Select a set of instances 

Train classifier with this subset 

 Random selection, uncertainty sampling 

Outliers, non-representative instances 

 

 

 



Problem with Classifiers 

 Incorporate Incremental Clustering  
 Unsupervised learning,  based on local structure 

 Create groups of highly correlated data-points 

 No re-clustering of data 

 

 Our contribution : Active Learning 
combined with Incremental Clustering  
 Use only 2% of the overall message labels 

 Consider natural grouping of data : select 
representative instances for training 

 



 

 

 

Active Learning combined 

with Incremental 

Clustering  



Active Learning combined with Incremental Clustering  
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Initialization Phase 
 Until the first 1% of labels is reached: 

For each new message : 

Request message’s label 

Compute rt  based on label  

Place the message accordingly: 
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Incremental Clustering  

 

 

 

 

 

Xi  :word at position i 

BXi : the number of already classified messages that 

contain Xi 

KXi : the number of messages that belong to a cluster Cj,k 

and do not contain Xi 

K`Xi : the number of messages in Clj  that contain the 

word Xi  but are not included in a cluster Cj,k 
 

 

Given a message X = {X1, X2, X3,..., Xn} and a 

cluster Cj,k of a clustering Clj compute : 



Active Learning  
 For the following batches : 

For each new incoming message: 

Compute rt  for both clusterings → rtH/rtSp 

Until 1% of labels is reached : 

Select/place instances based on: 

 

 
rtH< low low < rtH < high rtH > high 

rtSp < low      

low < rtSp < high    

 

 

 

rtSp > high   

 

 

 



Learning Algorithms  

Limited training (LT) : train classifier only with labelled 

messages 

Semi-supervised training (SST) : train classifier on all 

messages 

true label for selected instances 

 classifier’s predictions on unlabelled  

Meta-classifier (linear):  weighted combination of LT and 

SST 

Weights based on accuracy 



 

 

 

 

Experiments 



Experimental set-up 
 Datasets : 

 Enron-Spam, NSCR “Demokritos” 

 Baseline :  2%B  

 Target Model : Supervised Training (ST) 

 Thresholds tested: [0.3,0.5], [0.5,1.0] 

 Evaluation 

 ROC curves  

x-axis :  1-ham recall (1-specifity) 

y-axis : spam recall (sensitivity) 

 Area Under Curve (AUC)  

 Statistical significance based on AUC 

 Classifier : Naïve Bayes 



Experimental results 
Proportion of spam/ham requested labels 

 

 

 

 

 

 

Datasets First 1% 

 

Extra 1%  

[0.3-0.5] 

 

Extra 1% 

 [0.5-1] 

 

Total 

Ham Spam Ham Spam Ham Spam 

farmer-d +GP 42 9 27 24 33 18 51 

kaminski-v 46 12 44 14 46 12 58 

kitchen-l + BG 40 15 40 15 41 14 55 

williams-w3 + GP 17 43 9 51 13 47 60 

beck-s + SH 16 35 8 43 13 38 51 

lokay-m + BG 16 44 2 58 13 47 60 

User 1 67 31 80 18 69 29 108 

User 2 36 98 44 90 55 79 134 

User 3 68 108 98 76 68 93 161 

User 4 59 23 62 20 58 24 86 



Good Cases 

 

 

 

 

 

 

 

 
•Limit x-axis between 0.0-0.2 

•Statistical significant differences 

between 2%B and linear 

•Similar performance between ST 

and linear 



Problematic Cases 

 

 

 

 

 

 

•2%B similar to linear 

•ST similar to 2%B 

•Low overall performance 

of methods 

 



Experimental results 

 

 

 

 

 

 

 

 

 

 
 

 * : The difference between this method and the method on the left is not statistically significant  

 In half datasets : LT > SST.  In other half  : SST > LT 

 linear > 2%B :  statistical significant differences 

 linear achieves similar results with the ST 
 

 

Datasets Descending order of the methods based on their AUC 

farmer-d +GP ST Linear LT* 2%B* SST 

kaminski-v ST Linear LT* SST 2%B 

kitchen-l + BG ST SST* Linear* 2%B LT* 

williams-w3 + GP ST SST Linear 2%B LT 

beck-s + SH ST SST* Linear LT 2%B* 

lokay-m + BG ST SST* Linear 2%B LT* 

User 1 ST Linear LT* 2%B* SST 

User 2 ST Linear* LT* 2%B* SST 

User 3 ST SST* Linear 2%B LT* 

User 4 ST Linear LT 2%B SST 



Recap and Conclusions 

Spam filtering incorporating Active Learning 

and Incremental Clustering 

Selectively request labels for messages 

Request only 2% of overall labels 

 

 Good performance with limited data 

 Best learning method outperforms baseline 

 Similar results with fully supervised approach 

 



Thank you! 

 

 

 

 

Questions? 


