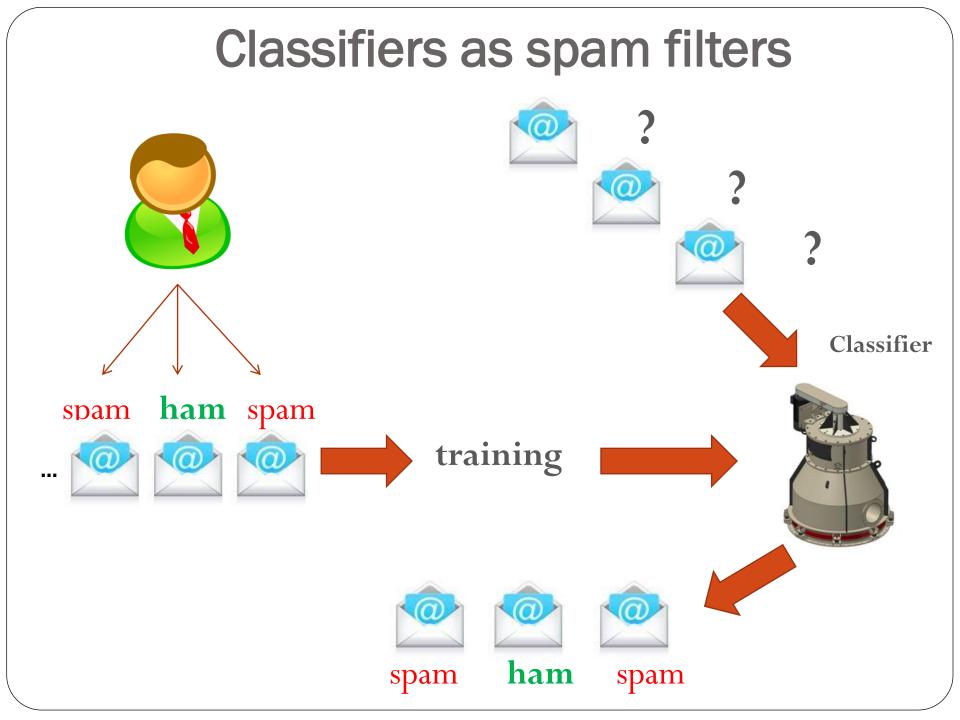
Spam Filtering: an Active Learning approach using Incremental Clustering

Kleanthi Georgala^{1,2} Aris Kosmopoulos^{1,3} Georgios Paliouras¹

¹National Center of Scientific Research "Demokritos", Agia Paraskevi, 153 10 Attiki, Greece
 ²LIACS, Leiden University, the Netherlands
 ³Athens University of Economics and Business, Athens, Greece



Problem with Classifiers

>User cannot provide labels for all messages

Solution :

- ➢ Minimize manual labeling → Active Learning
 ➢ Select a set of instances
 - Train classifier with this subset
 - Random selection, uncertainty sampling
 Outliers, non-representative instances

Problem with Classifiers

- Incorporate Incremental Clustering
 - Unsupervised learning, based on local structure
 - Create groups of highly correlated data-points
 - > No re-clustering of data

Our contribution : Active Learning combined with Incremental Clustering

- Use only 2% of the overall message labels
- Consider **natural grouping** of data : select **representative instances** for training

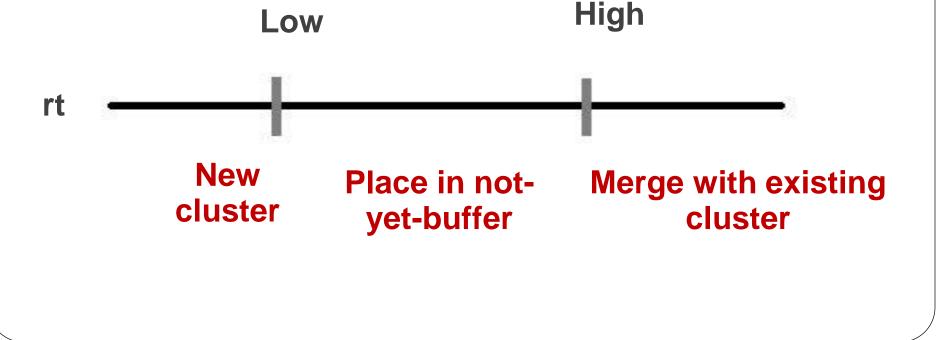
Active Learning combined with Incremental Clustering

Active Learning combined with Incremental Clustering Initialization phase Use first 1% of labels Incremental create Spam and Ham spam ham spam Clustering Clustering Remaining 1% of labels clusterings Active Learn: spam spam ham Ham **Following batches** clustering ham spam Spam clustering spam ham ham spam ham 7 7

Initialization Phase

- Until the first 1% of labels is reached:
 - *For each new message :
 - Request message's label

 - Place the message accordingly:



Incremental Clustering

Given a message $X = \{X_{\mu}, X_{\nu}, X_{\mu}, X_{\mu}\}$ and a cluster $C_{j,k}$ of a clustering Cl_{j} compute :

$$rt = \frac{\sum_{X_i} B_{X_i}}{\sum_{X_i} K_{X_i} + \sum_{X_i} K'_{X_i}}$$

 $\succ X_i$:word at position *i*

 $> B_{X_i}$: the number of already classified messages that contain X_i

 K_{X_i} : the number of messages that belong to a cluster $C_{j,k}$ and do not contain X_i

 $\succ K_{x_i}$: the number of messages in Cl_j that contain the word X_i but are not included in a cluster $C_{i,k}$

Active Learning

- For the following batches :
 - ✤For each new incoming message:
 - & Compute *rt* for both clusterings $\rightarrow rtH/rtSp$
 - **White Units** Units of labels is reached :

Select/place instances based on:

	rtH< low	low < rtH < high	rtH > high
rtSp < low	\checkmark	\checkmark	×
low < rtSp < high	\checkmark	♦	×
rtSp > high	×	×	•

Learning Algorithms

Limited training (LT) : train classifier only with labelled messages

Semi-supervised training (SST) : train classifier on all

messages

➤true label for selected instances

Classifier's predictions on unlabelled

Meta-classifier (linear): weighted combination of LT and SST

➤Weights based on accuracy

Experiments

Experimental set-up

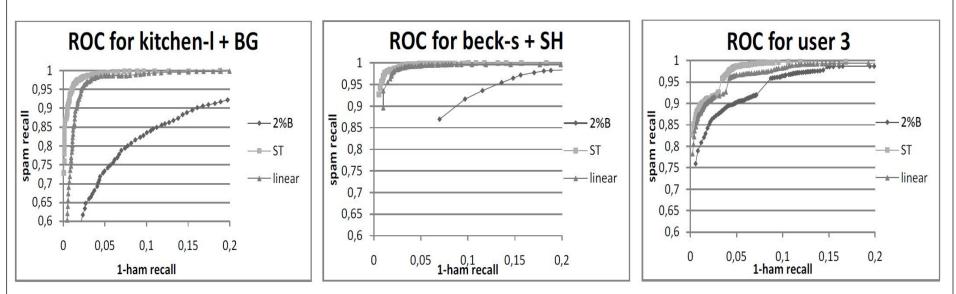
- Datasets :
 - Enron-Spam, NSCR "Demokritos"
- Baseline : 2%B
- Target Model : Supervised Training (ST)
- Thresholds tested: [0.3,0.5], [0.5,1.0]
- Evaluation
 - ROC curves
 - >x-axis: 1-ham recall (1-specifity)
 - > y-axis : spam recall (sensitivity)
 - Area Under Curve (AUC)
 - Statistical significance based on AUC
- Classifier : Naive Bayes

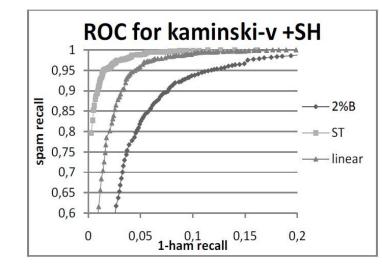
Experimental results

Proportion of spam/ham requested labels

Datasets	First 1%		Extra 1% [0.3-0.5]		Extra 1% [0.5-1]		Total
	Ham	Spam	Ham	Spam	Ham	Spam	
farmer-d +GP	42	9	27	24	33	18	51
kaminski-v	46	12	44	14	46	12	58
kitchen-l + BG	40	15	40	15	41	14	55
williams-w3 + GP	17	43	9	51	13	47	60
beck-s + SH	16	35	8	43	13	38	51
lokay-m + BG	16	44	2	58	13	47	60
User 1	67	31	80	18	69	29	108
User 2	36	98	44	90	55	79	134
User 3	68	108	98	76	68	93	161
User 4	59	23	62	20	58	24	86

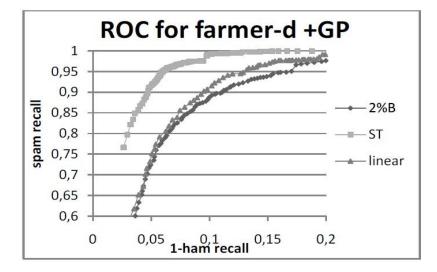
Good Cases



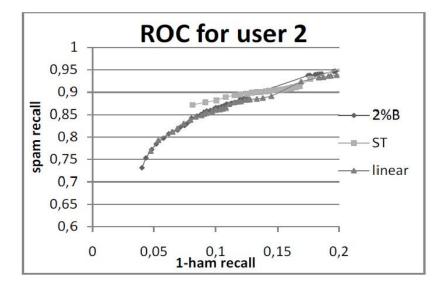


- •Limit x-axis between 0.0-0.2
- •Statistical significant differences between **2%B** and *linear*
- •Similar performance between *ST* and *linear*

Problematic Cases



•2%**B** similar to *linear*



ST similar to 2%B
Low overall performance of methods

Experimental results

Datasets	Descending order of the methods based on their AUC						
farmer-d +GP	ST	Linear	LT*	2%B*	SST		
kaminski-v	ST	Linear	LT*	SST	2%B		
kitchen-l + BG	ST	SST*	Linear*	2%B	LT*		
williams-w3 + GP	ST	SST	Linear	2%B	LT		
beck-s + SH	ST	SST*	Linear	LT	2%B*		
lokay-m + BG	ST	SST*	Linear	2%B	LT*		
User 1	ST	Linear	LT*	2%B*	SST		
User 2	ST	Linear*	LT*	2%B*	SST		
User 3	ST	SST*	Linear	2%B	LT*		
User 4	ST	Linear	LT	2%B	SST		

- *:The difference between this method and the method on the left is not statistically significant
- In half datasets : LT > SST. In other half : SST > LT
- Iinear > 2%B : statistical significant differences
- *linear* achieves similar results with the *ST*

Recap and Conclusions

Spam filtering incorporating Active Learning and Incremental Clustering

Selectively request labels for messages
Request only 2% of overall labels

- Good performance with limited data
- Best learning method outperforms baseline
- Similar results with fully supervised approach

