Edge Weight Method for Community Detection in Scale-Free Networks

Sorn Jarukasemratana Tsuyoshi Murata

Tokyo Institute of Technology

WIMS'14 June 2-4, 2014 - Thessaloniki, Greece

Modularity

- edges inside communities = 22
- edges between communities = 3

Low modularity score

- edges inside communities = 14

- edges between communities = 11

The higher the modularity the better

Modularity on network with scale-free property

Modularity considered all nodes and edges as equal.

FacebookO network from Ego Facebook Datasets

Previous limitation

•Graphs that contain both communities with scale-free attribute and non scale-free attribute.

Ground Truth

Louvain Algorithm NMI = 0.480 Node Centrality Algorithm NMI = 0.289

The goal of this research

 Community detection in scale-free networks that some communities' node degree follows power law (scale-free) while some communities' node degree follows normal distribution.

Ground Truth

Scale-free Approach NMI – 0.246

New approach

- Combine previous approach with modularity optimization method
 - Perform scale-free approach then followed by non scale-free approach.

Proposed Method NMI = 0.951 Proposed Method NMI = 0.656

Edge weight

- Similar to rubber band
- •Weight is similar to pulling power of the rubber band.
- Edge with high pulling power, should be in the same Community.

Edge weight calculation - 1

•Centrality – the more central, the more important.

-Using attenuation factor, similar to Katz centrality. The farther away, less effect it has.

Weight of edge 1-2 = 1 + 0.1*4 + 0.01*8 = 1.48

Edge weight calculation - 2

• Clustering coefficient – used for differentiate edge that connects two communities

-Can be counted by using triplets (3 nodes, 3 edges forming triangle).

without clustering coefficient

with clustering coefficient

Community detection phase - step 1 initial

- From edge with the highest weight to the lowest weight,
 - -If both nodes that connected by this edge has no community, assign new community.
 - -If one node has community, assign this community to other node.
 - -If both have communities, do nothing.
- Scale-free community is detected

Result- step 1 initial

Community detection phase - step 1 con.

•This case can happen and this is wrong !

- node "a" should be in blue community

• Check all nodes at the edges of each community.

Result- step 1 converged

Community detection phase - step 2

- Apply Lovain algorithm on our result, by using our weight.
- Communities that node degree follows normal distribution is detected.

• Black and pink community merge into one community due to modularity gain

Step 1 again

• If there are community changes in step 2, it is possible that the result from step 2 can be changed to.

- Blue nodes that stay inside right most community are now reassigned to pink.
- •With the same idea, if there are changes in step 1, step 2 need to be performed again too. The loop between step 1 and 2 is going until all nodes are balanced.

Result using NMI – synthetic networks

Result using NMI – datasets with ground truth

NetworkName	Louvains	NodeCentrality	Proposed Algorithm	EdgeBeweeness	Label Propagation
Zachary karate club	0.359	1.0	1.0	0.370	0.678
American College Football	0.765	0.765	0.765	0.723	0.725
Doubtfulsound dolphins	0.328	0.609	0.580	0.486	0.332
Political books	0.349	0.308	0.449	0.318	0.238

*Does not show significant improvement over previous approaches.

Example result on real-world dataset

• FacebookO network from Ego Facebook Datasets

Louvains Algorithm

Node Centrality

Proposed Methods

Computation time

Networks	Nodes	Edges	W eighting	Community Detection	Time(seconds)
GRQC	4158	13422	24	3	27
HepTh	6301	20777	26	1	27
Gnutella8	8638	24806	19	12	31
PGP	$10,\!680$	24,316	43	12	55
DBLP	317,080	1,049,866	3029	3161	6190

$O(mk^2 + n \log n)$

m is number of edges, *k* is average degree, *n* is number of nodes

Current limitation - noises

Noises – the worst case scenario

Ground Truth

Louvain Algorithm

Proposed Method

On rare instances, when edges that link 2 hub nodes receive high centrality score, whole graph can be merged into one community.

Q & A