Predicting the Performance of Collaborative Filtering Algorithms

Pawel Matuszyk and Myra Spiliopoulou

Knowledge Management and Discovery Otto-von-Guericke University Magdeburg, Germany

04. June 2014

- CF is a widely used family of algorithms for recommender systems
 - e.g. matrix factorization
 - neighbourhood-based methods
- not appropriate for all applications
- how do we know, if CF is applicable?
 - implementing a CF method \rightarrow running expensive experiments \rightarrow tuning \rightarrow evaluation OR
 - predicting the performance of CF given a dataset

- a method for a visual assessment of dataset characteristics
- mapping of users into equivalence classes
- $[u] = \{u_x \in U | |R(u_x)| = |R(u)|\}$
- U = a set of users
- $R(u_x) = \text{set of ratings of user } u_x$
- building of a co-rating matrix
 - one cell = average number of co-ratings between $([u_x], [u_y])$
 - a heatmap as visualization
- histogram of cardinalities of user classes

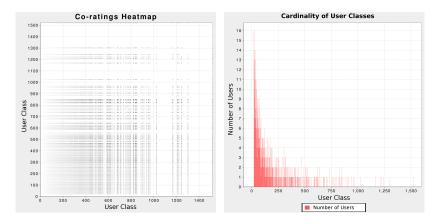


Figure: Visualization of the Movie Lens 1M dataset.

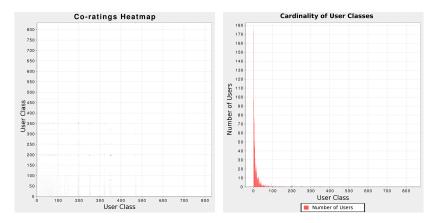


Figure: Visualization of the Epinions dataset.

 $\bullet\,$ measures for quantifying the characteristics of dataset ${\cal D}\,$

• sparsity
$$(\mathcal{D}) = 1 - rac{\sum_{u \in U} |R(u)|}{|U| \cdot |Items|}$$
 [AB11]

• quantifying the distribution of co-ratings (high values better)

• Entropy(
$$\mathcal{D}$$
) = $-\sum_{x,y} \frac{cor([u_x],[u_y])}{\sum_{x,y} cor([u_x],[u_y])} \log_2\left(\frac{cor([u_x],[u_y])}{\sum_{x,y} cor([u_x],[u_y])}\right)$

•
$$GiniIndex(\mathcal{D}) = 1 - \sum_{x,y} (\frac{cor([u_x], [u_y])}{\sum_{x,y} cor([u_x], [u_y])})^2$$

- mapping of the dataset measures to the RMSE values
- for each dataset \mathcal{D} : sparsity(\mathcal{D}), Entropy(\mathcal{D}), Gini(\mathcal{D})
- two CF methods:
 - user-based CF with cosine similarity
 - SVD++ [Kor08]
- two target attributes: {*RMSE*_{UB-CF}, *RMSE*_{MF}}
- target value = best value of RMSE found by a grid search
- 4 datasets \rightarrow 4 learning instances

Results of the Grid Search

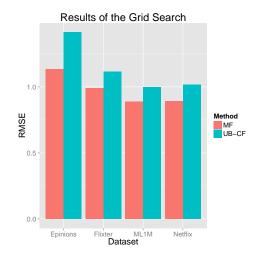


Table: Pearson's product moment correlation coefficients between our measures and the RMSE. Significance at level < 0.03 marked in red.

Measure	Correlation with RMSE		Alternative	p-value	
	UB-CF	MF	Hypothesis	UB-CF	MF
1-Gini	0.9969276652	0.9760339396	true correl > 0	0.001536	0.01198
Entropy	-0.9488311629	-0.9849657734	true correl < 0	0.02558	0.007517
Sparsity	0.737570808	0.7795095148	true correl > 0	0.1312	0.1102
(1-Gini) · Sparsity	0.9969300691	0.9758969096	true correl > 0	0.001535	0.01205
Entropy · Sparsity	-0.9409525839	-0.9733224195	true correl < 0	0.02952	0.01334

- strong linear correlation of our measures with the RMSE
- correlation based on only 4 instances, but p-values prove significance

CF-Performance Predictor

- linear regression (LR) as predictor of RMSE
- $RMSE = \alpha \cdot (1 Gini) + \beta \cdot Sparsity + \gamma$
- evaluation: learn LR on RMSE_{UB-CF} and use it to predict RMSE_{MF} and vice versa
- evaluation measure: Pearson's product moment correlation between predictions and real values
- learnt parameters:

Method	α	β	γ	
UB-CF	1158.0332	0.925	0.1004	
MF	621.7	1.13	-0.2	

Regression on	UE	B-CF	MF		
Regression on	Corr.	p-value	Corr.	p-value	
UB-CF	0.99967	0.000167	0.98455	0.00773	
MF	0.99649	0.00175	0.98768	0.00616	

Table: Pearson's product moment correlation coefficients of RMSE predictions with real values.

- based only on dataset statistics we built a performance predictor
- results highly and significantly correlate with real values
- alternative to implementing and running expensive experiments
- limitation: we tested the method on datasets with rating range between 1 and 5
- rating behaviour with a different rating rang is different (our future work)

[AB11] Deepa Anand and Kamal Bharadwaj.

Utilizing various sparsity measures for enhancing accuracy of collaborative recommender systems based on local and global similarities. *Expert Syst. Appl.*, 38(5):5101–5109, 2011.

[Kor08] Y. Koren.

Factorization meets the neighborhood: a multifaceted collaborative filtering model.

In 14th ACM SIGKDD, pages 426-434. ACM, 2008.

