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Purposes

● The development of an integrated web environment – mashup

● The visualization of users' opinions 

– expressed in their comments on YouTube videos

– depicted on a geo-located map

● The recognition of personal opinion in multimedia content



  

Theoretical Background

● Mashups – Integrated platforms that combine complicated data from more 
than one sources

● Customer, business and data mashups

● Design and development

● Service-Oriented Architecture (SOA)

● Representation State Transfer (REST) network protocol

Table 1. Mashup categories and technologies 

Principles Presentation-oriented Process-oriented Data-oriented

Technologies

XMLHTTPRe  
 quest objects
XML-RPC
JSON-RPC
REST SOAP

HTML
XHTML
CSS
JavaScript
AJAX

Java
Python
PHP

JavaScript
Jscript
DOM
XML
JSON

Java
Python
XML
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Sentiment Analysis

● SA – Opinion Mining (OM) → Natural Language Processing (NLP), 
Computational Linguistics and Text Mining

● Approaches

– Polarity Classification removes objective sentences –        
subjectivity detector

– Identification of strength or weakness in texts – scaling system

– Lexicon-based techniques

● Semantic Orientation (SO) – Part-of-Speech (POS) parsers

– the intensity and the orientation of words 
– Machine Learning methodologies

● Support Vector Machines (SVMs)
● Naïve Bayes

– unigrams, bigrams, and POS tags
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The EmoTube 
Framework

● Web 2.0 multimedia 
content

● Geo-information

● Sentiment Analysis        
in users' opinions

out-of-process              
data-oriented mashup

Figure 1. The proposed framework



  

The EmoTube Architecture

Processing Environment Web Tools Data

Collection Back-end
YouTube API
Python crawler

video id – URL – title
publication date – geo-location
view counts – ratings – comments

Cleaning Back-end
Python
NLTK library

common words (e.g., “a”, “is”)
no-English words
numbers – punctuations

Retrieval Back-end XML 10 datasets

Sentiment 
Analysis

Back-end SentiWordNet
lexicon

video comments

Integration/ 
Visualization

Front-end
Google Maps API
JavaScript
HTML – CSS

video content – geo-located
comments – semantic results

Table 2. Overview of methodologies, entities, technologies and types of data



  

Algorithm 1

● Semantic Orientation of each analyzed comment

– Negation words (e.g., “not”, “can't”)

– Intensifiers (e.g., “less”, “hardly”)

– Emoticons (e.g., “:-(”) - lexicon from University of Maryland, Baltimore

● The calculation of the total sentiment score of comments

Table 3. Pseudo-code of Algorithm 1

1: /*Preprocessing of data*/ 

2: C* = CleanData(C)

3: EC = FindOpinionWords(C*)

4: /*Calculation of the emotional score for each word 
based on intensifiers and valence shifters*/

5: SCI = CalculateScoreIntensifiers(EC, intensifiers)

6: SCV = CalculateScoreValenceShifters(EC, valence 
shifters)

7: /*Calculation of the total score for each comment*/

8: SC = CalculateTotalScore(C*, SCI, SCV)
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The EmoTube Website

● A multiple-choice web environment

– Location

– Topic

– Time period

● Dynamically-presented information

– Video title

– Video content

● Most recent comments
● More comments
● The polarity score of comments on pie charts



  

The EmoTube Website
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Scenario

“...HARD EVIDENCE”
“...should be classed as
murder”
“...the plane got too scared...”



  

Scenario

“yes I agree a plane was 
crashed... but was it really
a terrorist act or just a lame 
excuse...”“...HARD EVIDENCE”

“...should be classed as
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“...the plane got too scared...”



  

Scenario

“yes I agree a plane was 
crashed... but was it really
a terrorist act or just a lame 
excuse...”“...HARD EVIDENCE”

“...should be classed as
murder”
“...the plane got too scared...”

Positive: 33.3%

Negative: 66.7%



  

Conclusions

● The EmoTube Tool

– Friendly interface for easy navigation

– Opinionated information of “YouTubers” in a unified way

– Motivation to enterprises 

● Difficulties in sentiment detection of user comments

– Abbreviations (e.g., “lol”)

– Positive and negative meaning of the same phrase

● Future extensions

– A more in depth analysis with the use of specific emotions (e.g., anger)

– A more automatic mechanism that enriches the available content 
according to users' needs
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Thank you for your attention!Thank you for your attention!
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