Knowledge Sanitization on the Web

Vasileios Kagklis¹ Vassilios S. Verykios² Giannis Tzimas³ Athanasios K. Tsakalidis¹

 ¹Computer Engineering & Informatics Department, University of Patras
 ²School of Science & Technology, Hellenic Open University
 ³Computer & Informatics Engineering Department, Technological Educational Institute of Western Greece

Thessaloniki, GREECE June 2014

WIMS 2014

э

Overview

- Introduction
- 2 Background and Problem Formulation
- 3 A Taxonomy of FIH techniques
- 4 An Overview of LP-Based Techniques
- 5 Experimental Results
- 6 A Knowledge Sanitization Toolbox

7 Conclusions

8 References

< 6 >

- ∢ ⊒ →

.∋...>

Background and Problem Formulation A Taxonomy of FIH techniques An Overview of LP-Based Techniques Experimental Results A Knowledge Sanitization Toolbox References

Privacy Preserving Data Mining (PPDM) Knowledge Sanitization Applications & Examples

Need for Privacy

- The widespread use of the Internet caused the rapid growth of data on the Web.
- As data on the Web grew larger in numbers, so did the perils due to the applications of data mining.

• Thus, the need for privacy preserving techniques related to data mining on the Web, became more essential.

Background and Problem Formulation A Taxonomy of FIH techniques An Overview of LP-Based Techniques Experimental Results A Knowledge Sanitization Toolbox Conclusions References

Privacy Preserving Data Mining (PPDM) Knowledge Sanitization Applications & Examples

A Failing-to-Preserve-Privacy Example

- AOL data release [4]
- Data in the form of 20,000,000 search keywords, for 650,000 users, for a period of 3 months.
- Intentional release for research purposes.
- Appropriate editing did not take place.
- The users were only identified by a unique numeric ID.
- Some clues from the search queries were enough for successfully tracking the identities of several users by their searches.

WIMS 2014

Privacy Preserving Data Mining (PPDM) Knowledge Sanitization Applications & Examples

Privacy Preserving Data Mining (PPDM) [1, 2]

- Research area that investigates techniques to preserve the privacy of individual data and induced patterns.
- Looks into the interplay between data sharing and privacy violation.
- Data mining can violate privacy.
- Allow data mining while prohibiting leakage of sensitive information.

Background and Problem Formulation A Taxonomy of FIH techniques An Overview of LP-Based Techniques Experimental Results A Knowledge Sanitization Toolbox References

Privacy Preserving Data Mining (PPDM) Knowledge Sanitization Applications & Examples

Taxonomy in PPDM

PPDM consists of several pillars:

- Input/Data/Individual Privacy
- Adversarial Privacy

• Output/Knowledge/Collective Privacy

We are going to focus on Output Privacy, also known as Knowledge Sanitization.

(日) (同) (三) (三)

Background and Problem Formulation A Taxonomy of FIH techniques An Overview of LP-Based Techniques Experimental Results A Knowledge Sanitization Toolbox Conclusions References

Privacy Preserving Data Mining (PPDM) Knowledge Sanitization Applications & Examples

Knowledge Sanitization

- Knowledge Sanitization [3] aims at concealing sensitive patterns included in the data.
- It consists of a wide variety of different approaches.
- Frequent pattern and association rule sanitization.
- Sequence sanitization.
- Classification rule sanitization.
- Data stream sanitization.

(日) (同) (三) (三)

Background and Problem Formulation A Taxonomy of FIH techniques An Overview of LP-Based Techniques Experimental Results A Knowledge Sanitization Toolbox References

Privacy Preserving Data Mining (PPDM) Knowledge Sanitization Applications & Examples

Applications (1/2)

- Frequent patterns are widely used on the web.
- Product-selling (and other) websites use frequent basket analysis to:
 - discover similarities in purchasing habits among customers
 - make recommendations
- Some websites may sell those anonymously collected datasets to advertising companies.
- Web link and click stream analysis aims at:
 - the improvement of the structure of a website
 - impoving of the navigation experience
 - the predictive web caching

WIMS 2014

イロト イヨト イヨト イヨト

Background and Problem Formulation A Taxonomy of FIH techniques An Overview of LP-Based Techniques Experimental Results A Knowledge Sanitization Toolbox Conclusions References

Privacy Preserving Data Mining (PPDM) Knowledge Sanitization Applications & Examples

Applications (2/2)

- Association rules derive from frequent itemsets.
- A powerful tool for discovering relationships hidden in large datasets.
- Association rule mining can be applied on web log files to profile the visitors' behavior.
- Certain sanitization techniques must be applied in the cases mentioned.

イロト イポト イヨト イヨト

Preliminaries (1/3)

•
$$I = \{i_1, i_2, ..., i_n\}$$
: set of items

- A subset $X \subseteq I$ is an itemset.
- $D = \{T_1, T_2, \dots, T_m\}$: transactional database.
- Database D can be in binary format (|D| × |I| matrix)
 T_{kj} = 1, if k-th transaction contains j-th item.
 T_{kj} = 0, otherwise.

3

イロト 不得 とうき イヨト

Preliminaries (2/3)

- Given an itemset X:
 - $\sigma(X)$: number of supporting transactions, and

• sup(X): fraction of supporting transactions

• Itemset X is **large** or **frequent** iff:

• $sup(X) \ge msup$, where $msup = \sigma_{min}/|D|$

- or equiv. $\sigma(X) \ge \sigma_{\min}$.
- Otherwise, X is infrequent.

(日) (同) (三) (三)

Preliminaries (3/3)

- F_{σ} : set of *all* frequent itemsets in *D*, for $\sigma_{min} = \sigma$.
- We define the following borders of F_{σ} :
 - **Positive Border**: contains all maximally frequent itemsets in *D*.
 - Negative Border: contains all minimally infrequent itemsets in D.
- S: set of sensitive itemsets that the owner wants to conceal, i.e., force them to become infrequent in D.

イロト イポト イヨト イヨト

Frequent Itemset Extraction

For $\sigma_{min} = 3$, the set of frequent itemsets F_{σ} is:

Tid	Items		$\sigma(ab) = 4$	
1	abcde	$\boldsymbol{\sigma}(\boldsymbol{a}) = \boldsymbol{7}$	$\sigma(ac) = 5$	
2	acd	$\sigma(b) = 6$	$\sigma(ad) = 6$	$\sigma(abc) = 2$
3	abdfg	$\sigma(c)=7$	$\sigma(ae) = 2$	σ(abc) = 2 σ (abd) = 3
4	bcde	$\sigma(d) = 8$	${m \sigma}({m bc})={m 4}$	$\sigma(acd) \equiv 3$ $\sigma(acd) = 4$
5	abd	$\pmb{\sigma}(\pmb{e})=\pmb{3}$	$\sigma(bd) = 5$	$\sigma(bcd) = 3$
6	bcdfh	$\sigma(f) = 2$	$\sigma(be)=2$	$\sigma(cde) = 3$
7	abcg	$\sigma(g)=2$	$\sigma(cd) = 6$	$\mathbf{O}(\mathbf{cue}) = \mathbf{J}$
8	acde	$\sigma(h) = 2$	$oldsymbol{\sigma}(coldsymbol{e})=oldsymbol{3}$	
9	acdh		$\sigma(de) = 3$	

Border Revision (1/4)

Initially:

- the **Positive Border**, $B^+(F_{\sigma})$, is marked with yellow color, while
- the **Negative Border**, $B^-(F_{\sigma})$, is marked with orange color

Border Revision (2/4)

- How does the hiding process affect the set of frequent itemsets?
- Some of the frequent itemsets, i.e., the supersets of S will be concealed as well.
- This is due to the anti-monotonicity property of support: $X \subset Y \implies \sigma(X) \ge \sigma(Y)$.
- Let $SS = \{X \in F_{\sigma} \mid \forall Y \colon Y \subseteq X \implies Y \in S\}$ be the set of non-sensitive itemsets and their supersets in F_{σ} .
- The tentative set of frequent itemsets is defined as $\tilde{F}_{\sigma} = F_{\sigma} SS$.

3

Border Revision (3/4)

Let $S = \{ab, bc, cd\}$. Then $\tilde{F}_{\sigma} = \{a, b, c, d, e, ac, ad, bd, ce, de\}$ and:

- the **Revised Positive Border**, $B^+(\tilde{F}_{\sigma})$, is marked with yellow color,
- the sensitive itemsets are marked with blue color and
- the **Revised Negative Border**, $B^-(\tilde{F}_{\sigma})$, is marked with orange color, which also includes the sensitive itemsets

Border Revision (4/4)

Why border revision?

- Naive approach: conceal without taking into account the non-sensitive frequent itemsets.
- **Better approach**: try to protect all non-sensitive frequent itemsets to avoid side effects.
- Border based approach: take into account only $B^+(\tilde{F}_{\sigma})$.
 - Anti-monotonicity property of support.
 - $B^+(\tilde{F}_{\sigma})$: maximal itemsets of \tilde{F}_{σ} .
- The last two approaches are equivalent, but the latter is computationally lighter.

WIMS 2014

3

Hiding Methodologies (1/2)

- Heuristic distortion approaches: rely on turning 1's to O's and O's to 1's in order to achieve hiding.
- Heuristic blocking approaches: make use of an unkown symbol to signify the absence of a specific value.
- **Probabilistic distortion approaches**: apply a probabilistic model in order to distort the data.

(日) (同) (目) (日) (日)

3

Hiding Methodologies (2/2)

- Database reconstruction approaches: the non-sensitive knowledge is transformed to a database that is built from scratch.
- Inverse frequent itemset mining: has as its goal to create a database that corresponds to a certain set of useful and interesting patterns.
- Linear programming-based hiding techniques: formulate a hiding problem as a linear program, the solution of which helps to accomplish the concealing.

(日) (同) (目) (日) (日)

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

Linear Programming-Based Techniques

- Transform the problem into a linear program.
- The various types of constraints play a different role, depending on the formulation.
- The solution indicates the transactions to be sanitized or the exact items to be removed from each transaction.

(日) (同) (日) (日)

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

The LP Hiding Techniques

- Max-Accuracy
- Coefficient-Based Max-Accuracy
- Inline
- Hybrid

(日) (同) (日) (日)

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

Max-Accuracy

The Max-Accuracy Algorithm [5]

イロト イポト イヨト イヨト

Max-Accuracy

Image: Image:

Basic Features

- Each transaction is modeled by a corresponding binary variable.
- For each sensitive itemset in S, a constraint is built.
- If a sensitive itemset is contained in a transaction, then the corresponding constraint contains the corresponding binary variable.
- Size of the linear program: |D| variables and |S|constraints.
- The solution will determine which transactions need to be sanitized.
- Sanitization process on specified transactions follows. A B + A B +

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

The Formulation

Define parameters a_{iy} to be 1 if transaction $T_i \in D$ supports itemset $y \in S$ (sensitive itemsets) and 0 otherwise. Variables x_i will be set to 1 if transaction T_i needs to be sanitized and 0 otherwise, depending on the solution of the linear program.

$$\begin{array}{ll} \textit{minimize} & \sum_{\forall i: \ T_i \in D} x_i \\ \\ \textit{subject to} \left\{ \begin{array}{ll} \sum_{\forall i: \ T_i \in D} a_{iy} x_i \geq (\sigma_y - \sigma_{\min}^y + 1), \ \forall y \in S \\ & \forall_i: \ T_i \in D \\ & x_i \in \{0, 1\} \quad \forall i: T_i \in D. \end{array} \right. \end{array}$$

(日) (同) (日) (日)

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

The Formulation Explained

- Objective Function: the minimum number of transactions should be sanitized.
- Constraints: a sensitive itemset y needs to be hidden from at least $(\sigma_y \sigma_{min}^y + 1)$ transactions, in order to become infrequent.
- Obviously, the side effects that will be introduced are not taken into account.

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

The Data Hiding Algorithm

for transactions $T_i \in D$ such that T_i is to be sanitized do identify set of sensitive itemsets S_i supported by transaction T_i while $S_i \neq \emptyset$ do calculate $f_j = |\{k \in S_i | j \in k\}|, \forall$ item $j \in S_i$ remove item $j^* = \arg\max_j \{f_j\}$ update $S_i = S_i - \{k \in S_i | j^* \in k\}$ end while end for

(日) (同) (日) (日)

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

The Data Hiding Algorithm Explained

- Variables set to 1 in the solution of the linear program indicate-mark transactions for sanitization.
- The sensitive itemsets $S_i \subseteq S$ supported by a marked transaction are identified.
- Item j^* that appears in most itemsets in S_i is eliminated.
- Itemsets in S_i also containing j^* are removed from S_i .
- The process is repeated until S_i is left empty.
- If only one sensitive itemset is supported, then an item is removed randomly.

3

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

An Example (1/3)

- Let the transaction database *D*, the set of sensitive itemsets $S = \{ab, bc, cd\}$ and $\sigma_{min} = 3$.
- $ab \rightarrow \text{Tid set } \{1, 3, 5, 7\}.$
- $bc \rightarrow Tid set \{1, 4, 6, 7\}.$
- $cd \rightarrow Tid set \{1, 2, 4, 6, 8, 9\}.$

Tid	Items
1	abcde
2	acd
3	abdfg
4	bcde
5	abd
6	bcdfh
7	abcg
8	acde
9	acdh

(日) (同) (三) (三)

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

An Example (2/3)

Constraint Matrix:

	T ₁	T_2	T_3	T ₄	T_5	T_6	T ₇	T ₈	T 9
ab	1	0	1	0	1	0	1	0	0
bc	1	0	0	1	0	1	1	0	0
cd	1	1	0	1	0	1	0	1	1

minimize
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9$$

subject to
$$\begin{cases}
ab: x_1 + x_3 + x_5 + x_7 \ge 2 \\
bc: x_1 + x_4 + x_6 + x_7 \ge 2 \\
cd: x_1 + x_2 + x_4 + x_6 + x_8 + x_9 \ge 4
\end{cases}$$

イロト イポト イヨト イヨト

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

An Example (3/3)

- The optimal solution is $x_1 = x_2 = x_7 = x_8 = x_9 = 1$, while $x_3 = x_4 = x_5 = x_6 = 0$.
- Summary of the sanitization process:

Tid	Transaction	S.I. supported	Victim Items	Sanitized
1	abcde	cd, bc, ab	с, а	bde
2	acd	cd, ac	С	ad
7	abcg	ab	Ь	acg
8	acde	cd	С	ade
9	acdh	cd	С	adh

イロト イポト イヨト イヨト

WIMS 2014

э

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

Coefficient-Based Max-Accuracy

The Coefficient-Based Max-Accuracy Algorithm [6]

WIMS 2014

イロト イポト イヨト イヨト

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

Basic Features

- An improved version of the Max-Accuracy algorithm.
- The algorithm introduces proper coefficients for each variable, that corresponds to a transaction.
- As a result, the transactions that are going to be sanitized are selected more accurately.
- Size of the linear program: |D| variables and |S| constraints.
- The solution will determine which transactions need to be sanitized.
- The very same sanitization process as in Max-Accuracy is used.

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

Calculating the Coefficients

The coefficients c_m , $\forall m \in \{1, ..., |D|\}$, are calculated as follows:

- The coefficient c_m is initialized to zero.
- Let S_i be the set of all sensitive itemsets supported by T_j . The item i_k that is supported by most of the itemsets in S_j is selected.
- The number of non-sensitive frequent itemsets that are both supported by T_j and contain i_k is added to c_m .
- A sensitive itemset y is removed from S_j , if after removing item i_k itemset y stops being supported by the current transaction T_j .
- The process is done repeatedly, until S_j is left empty.

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

The Formulation

Simply put, the coefficient of a transaction is the number of affected non-sensitive frequent itemsets given the transaction is sanitized. The formulation is almost the same as in the Max-Accuracy. Only the objective function changes:

$$\begin{array}{ll} \textit{minimize} & \sum_{\forall i: \ T_i \in D} c_i x_i \\ \\ \textit{subject to} \left\{ \begin{array}{ll} \sum_{\forall i: \ T_i \in D} a_{iy} x_i \geq (\sigma_y - \sigma_{min} + 1), \ \forall y \in S \\ & \forall i: \ T_i \in D, \end{array} \right. \end{array}$$

(日) (同) (三) (三)

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

An Example (1/3)

Consider the same transaction database D, sensitive itemsets $S = \{ab, bc, cd\}$ and $\sigma_{min} = 3$ as in the previous example. The coefficients must be first calculated.

Tid	Trans.	Victim Items	Coefficients	
1	abcde	с, а	11	
2	acd	С	3	
3	abdfg	а	3	
4	bcde	С	4	
5	abd	а	3	
6	bcdfh	С	2	
7	abcg	Ь	1	
8	acde	С	5	
9	acdh	С	3	

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

An Example (2/3)

minimize
$$11x_1 + 3x_2 + 3x_3 + 4x_4 + 3x_5 + 2x_6 + 1x_7 + 5x_8 + 3x_9$$

subject to
$$\begin{cases} ab: x_1 + x_3 + x_5 + x_7 \ge 2\\ bc: x_1 + x_4 + x_6 + x_7 \ge 2\\ cd: x_1 + x_2 + x_4 + x_6 + x_8 + x_9 \ge 4 \end{cases}$$

(ロ) (部) (E) (E)

WIMS 2014

æ

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

An Example (3/3)

• The optimal solution is

$$x_2 = x_4 = x_5 = x_6 = x_7 = x_9 = 1$$
, while
 $x_1 = x_3 = x_8 = 0$.

• Summary of the sanitization process:

Tid	Trans.	S.I. supported	Victim Items	Sanitized
2	abd	ab	a:1, b:1	ad
4	bcde	bc, cd	b:1, c:2, d:1	bde
5	abd	ab	a:1, b:1	bd
6	bcdfh	bc, cd	b:1, c:2, d:1	bdfh
7	abcg	ab, bc	a:1, b:2, c:1	acg
9	abdh	ab	a:1, b:1	adh

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

The Inline Algorithm [7]

38/74

Vassilios S. Verykios Knowledge Sanitization on the Web

WIMS 2014

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

Basic Features (1/2)

• Database must first be transformed into a $|D| \times |I|$ binary array with elements:

$$m{b}_{kj} = egin{cases} 1 \, , & ext{if item } i_j \in {T}_k \ 0 \, , & ext{otherwise} \end{cases}$$

• b_{kj} values participating in the sensitive itemsets are substituted in all transactions with u_{kj} variables, which participate in the linear program's formulation.

WIMS 2014

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

Basic Features (2/2)

- For the two previous algorithms, the solution determines the transactions to be sanitized. Then sanitization follows.
- For the Inline algorithm the solution of the linear program specifies which items must be removed and from which transactions.
- This is a more exact database distortion approach [8].

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

The Formulation

where $V = \{X \in B^+(\tilde{F}) | X \cap I^S \neq \emptyset\}$ and I^S is the set of items contained by itemsets in S.

WIMS 2014

-

< ロ > < 同 > < 回 > < 回 > < □ > <

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

The Formulation Explained

- Objective Function: maximize the number of variables with value equal to 1. In other words, remove the fewest items.
- A sensitive itemset will get concealed if: $\sum_{\substack{T_k \in D\{X\}}} (\prod_{i_i \in X} u_{kj}) < \sigma_{min}, \forall X \in S.$
- Non-sensitive frequent itemsets will remain frequent if: $\sum_{\substack{T_k \in D\{R\}}} (\prod_{i_j \in R} u_{k_j}) \ge \sigma_{\min}, \forall R \in V, \text{ where}$ $V = \{X \in B^+(\tilde{F}) | X \cap I^S \neq \emptyset\}.$

(日) (同) (目) (日) (日)

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

Constraint Degree Reduction (CDR)

Linear programs cannot contain products. Products occuring in the inequalities of the formulation must be "linearized".

Replace

$$\sum_{T_k \in D\{F\}} \varphi_k \stackrel{\leq}{=} \sigma_{\min}, \varphi_k = \prod_{i_j \in F} u_{kj} = u_{kF_1} \times \ldots \times u_{kF_{|F|}}$$
with

$$\begin{cases} \varphi_k \leq u_{kF_1} \\ \varphi_k \leq u_{kF_2} \\ \vdots \\ \varphi_k \leq u_{kF_1} \\ \varphi_k \geq u_{kF_1} + u_{kF_2} + \ldots + u_{kF_{|F|}} - |I| + 1, \text{ where } |I| = \# \text{ vars in product}$$
and

$$\sum_k \varphi_k \stackrel{\leq}{=} \sigma_{\min}$$
where $\varphi_k \in \{0, 1\}.$

Dealing with Infeasibilities

- The formulation of the Inline algorithm might give an infeasible solution.
- The problem is relaxed until it becomes solvable.
- Only inequalities from the set V ($B^+(\tilde{F}_{\sigma})$) are removed.
- A constraint involving **maximal size** and **minimum support** itemsets in V is removed each time.
- The formulation with only the constrains in S has **always** a feasible solution.

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

An Example (1/4)

• Let the transaction database *D*, the set of sensitive itemsets $S = \{ab\}$ and $\sigma_{min} = 2$.

•
$$F_{\sigma} = \{a, b, c, d, ab, ac, ad, cd, acd\}.$$

•
$$S = \{ab\}$$
, and $SS = \{ab\}$.

*˜*F_σ = F_σ - SS = {a, b, c, d, ac, ad, cd, acd}.

Tid	Items	
1	ас	
2	acd	
3	cd	
4	Ь	
5	abcd	
6	d	
7	с	
8	ab	

(日) (同) (日) (日)

• $B^+(\tilde{F}_\sigma) = \{b, acd\}.$

WIMS 2014

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

An Example (2/4)

The database is converted into a binary array and the 1 values of sensitive itemsets (contained in transactions) are replaced with variables:

Tid	a	b	с	d	
1	1	0	1	0	
2	1	0	1	1	
3	0	0	1	1	
4	0	1	0	0	
5	u ₅₁	<i>u</i> ₅₂ 0	1	1	
6	0	0	0	1	
7	0	0	1	0	
8	u ₈₁	u ₈₂	0	0	< 6

Vassilios S. Verykios Knowledge Sanitization on the Web

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

An Example (3/4)

Tid	a	b	С	d
1	1	0	1	0
2	1	0	1	1
3	0	0	1	1
4	0	1	0	0
5	u ₅₁	u ₅₂	1	1
6	0	0	0	1
7	0	0	1	0
8	u ₈₁	u ₈₂	0	0

- Hiding itemset $S = \{ab\}$
- Itemsets in V must remain frequent: b: $1 + u_{52} + u_{82} \ge \sigma_{min}$ acd: $1 + u_{51} \ge \sigma_{min}$
- Itemsets in S must become infrequent:
 ab: u₅₁u₅₂ + u₈₁u₈₂ < σ_{min}
- Application of CDR for {ab}:
 - $\begin{array}{ll} \psi_1 \le u_{51} & \psi_2 \le u_{81} \\ \psi_1 \le u_{52} & \psi_2 \le u_{82} \end{array}$
 - $\begin{array}{l} \psi_1 \ge u_{51} + u_{52} 1 \quad \psi_2 \ge u_{81} + u_{82} 1 \\ \psi_1 + \psi_2 < \sigma_{min} \end{array}$

The Hybrid Algorithm [7]

48/74

Vassilios S. Verykios Knowledge Sanitization on the Web

WIMS 2014

Max-Accuracy Coefficient-Based Max-Accuracy Inline **Hybrid**

Basic Features (1/2)

- The solution of the previous algorithms determines from which transactions and/or which specific items should be extracted.
- The Hybrid algorithm creates an extension of the original database with synthetically generated transactions.
- The goal is to fix the contents of the extension so that to control the support of sensitive and non-sensitive itemsets.

WIMS 2014

Introduction Background and Problem Formulation A Taxonomy of FIH techniques Experimental Results A Knowledge Sanitization Toolbox References

Basic Features (2/2)

- Extension of database D_X : must contain the minimum sufficient number of transactions.
- Minimum size: $Q = \lfloor (\sigma(X_M)/msup) |D| \rfloor + 1$, where $X_M \in S$ such that $\sigma(X_M) \ge \sigma(X), \forall X \in S X_M$.
- Theoretically, this size seems to be suficient. Practically, this is not always the case. \implies Use of safety margin *SM*, i.e., *SM* more transactions in D_x .
- The extension D_x is a $|Q + SM| \times |I|$ array that initially contains only variables. The solution of the linear program gives a value to each variable and the transactions are formed.

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

The Formulation

where $thr = msup * (|D| + Q + SM) - \sigma(X)$

Max-Accuracy Coefficient-Based Max-Accuracy Inline **Hybrid**

The Formulation Explained

• Let
$$D' = D \cup D_x$$
.

• Objective Function: minimize the number of variables that will be set to 1.

• An itemset will be **frequent** in *D'* iff: *O+SM*

$$\sum_{q=1}^{+-SM} (\prod_{i_m \in X} u_{qm}) \geq msup \times (|D| + Q + SM) - \sigma(X)$$

• An itemset will be infrequent in D' iff:

$$\sum_{q=1}^{Q+SM} (\prod_{i_m \in X} u_{qm}) < msup \times (|D| + Q + SM) - \sigma(X)$$

• Empty transactions are not allowed: $\forall T_q \in D_X : \sum_{i_m \in I} u_{qm} \ge 1$

(日) (同) (三) (三)

Max-Accuracy Coefficient-Based Max-Accuracy Inline **Hybrid**

Constraint Degree Reduction (CDR)

Linear programs cannot contain products. Products occuring in the inequalities of the formulation must be "linearized".

$$\begin{array}{l} \mbox{Replace} \\ \sum_{T_k \in D\{F\}} \psi_k \lessapprox \sigma_{\min}, \psi_k = \prod_{j \in F} u_{kj} = u_{kF_1} \times \ldots \times u_{kF_{|F|}} \\ \mbox{with} \\ & \forall k \\ \begin{cases} \psi_k \leq u_{kF_1} \\ \psi_k \leq u_{kF_2} \\ \vdots \\ \psi_k \leq u_{kF_1} + u_{kF_2} + \ldots + u_{kF_{|F|}} - |I| + 1 \\ \mbox{and} \\ & \sum_k \psi_k \lessapprox \sigma_{\min} \\ \mbox{where } \psi_k \in \{0, 1\}. \end{array}$$

WIMS 2014

Max-Accuracy Coefficient-Based Max-Accuracy Inline Hybrid

An Example (1/2)

Tid	a	Ь	с	d	е	f
1	1	1	0	0	0	1
2	1	1	1	1	0	0
3	1	0	1	0	0	1
4	1	0	0	0	0	0
5	0	1	0	0	1	0
6	1	1	1	1	1	0
7	0	0	0	1	0	0
8	1	1	1	0	1	0
9	0	1	1	0	0	0
10	1	0	1	1	1	0
11	<i>u</i> ₁₁	<i>u</i> ₁₂	<i>u</i> ₁₃	<i>u</i> ₁₄	<i>u</i> ₁₅	u ₁₆
12	u ₂₁	u ₂₂	u ₂₃	u ₂₄	u ₂₅	u ₂₆
13	u ₃₁	u ₃₂	u ₃₂	u ₃₄	u ₃₅	u ₃₆
14	<i>u</i> ₄₁	<i>u</i> ₄₂	<i>u</i> ₄₃	<i>u</i> ₄₄	u ₄₅	u ₄₆

• Let transaction database D, $S = \{e, ae, bc\}$ and $\sigma_{min} = 3$.

•
$$\sigma(e) = 3$$
, $\sigma(ae) = 4$,
 $\sigma(bc) = 4$

• The extension D_x has size $Q = \lfloor (4/0.3) - 10 \rfloor + 1 = \lfloor 3.33 \rfloor + 1 = 4$ and initially contains variables.

Max-Accuracy Coefficient-Based Max-Accuracy Inline **Hybrid**

An Example (2/2)

Tid	a	Ь	с	d	е	f
1	1	1	0	0	0	1
2	1	1	1	1	0	0
3	1	0	1	0	0	1
4	1	0	0	0	0	0
5	0	1	0	0	1	0
6	1	1	1	1	1	0
7	0	0	0	1	0	0
8	1	1	1	0	1	0
9	0	1	1	0	0	0
10	1	0	1	1	1	0
11	1	0	0	0	0	0
12	1	0	1	1	0	0
13	1	0	1	1	0	0
14	1	1	0	0	0	0

- Due to the large number, the constraints are ommited.
- In the extended database support for the itemsets in *S* changes.
- When |D| = 10, then $\sup(e) = \frac{3}{10}$ and thus indeed $\sigma(e) = 3$.

(日) (同) (目) (日) (日)

• |D| = 14, $\sup(e) = \frac{3}{14} \Rightarrow \sigma(e) = \frac{30}{14} < \sigma_{min}$

Quantitative Comparison Qualitative Comparison

Datasets used

Dataset	# Trans.	# Items	Avg. Len.	σ_{min}
Sampled	500	34	11.12	100
BMS-1	59602	497	2.50	42
Mushroom	8124	119	23.00	1625

- Real datasets used for evaluation are available in the FIMI repository [9].
- Sampled: sampled version of Mushroom dataset.
- **BMS1**: stream data collected from the Blue Martini Software, Inc. [10].
- Mushroom: created by Roberto Bayardo (University of California, Irvine) [11].

- The evaluation process had 3 phases and for each phase one of datasets was used.
 - Different hiding scenarios were selected with various number/size of sensitive itemsets to hide.
 - Experiments were conducted several times with different sets of sensitive itemsets (the same set for all algorithms each time).
 - Phase 1: Sample dataset, Phase 2: BMS1 dataset, Phase 3: Mushroom dataset
 - At the end of each phase, the slowest algorithm is eliminated.

3

Quantitative Comparison Qualitative Comparison

Evaluation Process (2/2)

- Experiments were conducted with a toolbox written in Python.
- Linear programming techniques use the CPLEX [12] interface for Python.
- More about the toolbox in the next slides.

Quantitative Comparison Qualitative Comparison

Experimental Results - Phase 1 (1/2)

- Figure with runtime in seconds for each hiding scenario with the Sample dataset.
- Max-Accuracy and Coefficient-Based Max-Accuracy have much lower execution time.
- Inline and Hybrid have larger time complexity.
- But what about the side effects?

59/74

WIMS 2014

Quantitative Comparison Qualitative Comparison

Experimental Results - Phase 1 (2/2)

- Figure with side effects for each hiding scenario with the Sample dataset
- Inline and Hybrid introduce almost 0 side effects.
- But time is important. Very important!
- For the next phase the slowest algorithm is eliminated, which is Hybrid.

(日) (同) (三) (三)

Quantitative Comparison Qualitative Comparison

Experimental Results - Phase 2 (1/2)

- Figure with runtime in seconds for each hiding scenario with the BMS1 dataset.
- Inline again has much larger time complexity than the other two algorithms.
- Let's see what happens with the side effects.

(日) (同) (日) (日)

Knowledge Sanitization on the Web

WIMS 2014

Quantitative Comparison Qualitative Comparison

Experimental Results - Phase 2 (2/2)

- Figure with side effects for each hiding scenario with the BMS1 dataset
- Inline again has much fewer side effects than the other two algorithms.
- Again, the algorithm with the highest time complexity is eliminated, i.e. the Inline algorithm.

(日) (同) (三) (三)

Quantitative Comparison Qualitative Comparison

Experimental Results - Phase 3 (1/2)

- Figure with runtime in seconds for each hiding scenario with the Mushroom dataset.
- Max-Accuracy and Coefficient-Based Max-Accuracy have a good scalability.

(日) (同) (日) (日)

• What happens with the side effects?

Quantitative Comparison Qualitative Comparison

Experimental Results - Phase 3 (2/2)

- Figure with side effects for each hiding scenario with the Mushroom dataset.
- Time complexity is linear, but they introduce quite a few side effects.

Quantitative Comparison Qualitative Comparison

Qualitative Comparison

A qualitative comparison of the algorithms.

Algorithm	Execution	Scalability	Side Effects
	Time		
Max-Accuracy	Very Fast	Very Good	Moderate
CoeffBased	Fast	Good	Moderate-Good
Max-Accuracy			
Inline	Slow	Bad	Very Good
Hybrid	Slow	Very Bad	Very Good

Toolbox Interface (1/3)

Vassilios S. Verykios Knowledge Sanitization on the Web

イロト イヨト イヨト

WIMS 2014

æ

Toolbox Interface (2/3)

イロト イヨト イヨト イヨト

WIMS 2014

æ

References

Toolbox Interface (3/3)

68/74

Vassilios S. Verykios Knowledge Sanitization on the Web

WIMS 2014

Conclusions

- Max-Accuracy and Coefficient-Based Max-Accuracy: scalable, while introducing numerous side effects
- Inline and Hybrid: few side effects, but with bad scalability
- An optimal LP-based algorithm remains yet to be found

(日) (同) (三) (三)

Questions?

Vassilios S. Verykios Knowledge Sanitization on the Web

イロト イポト イヨト イヨト

WIMS 2014

References 1

- R. Agrawal and R. Srikant (2000) Privacy-preserving data mining SIGMOD 29: 439-450
- Y. Lindell and B. Pinkas (2000)

Privacy preserving data mining CRYPTO '00 Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology 1880: 36-54

Johnsten, Tom and Raghavan, Vijay V. (2002) A Methodology for Hiding Knowledge in Databases Proceedings of the IEEE International Conference on Privacy, Security and Data Mining 14: 9-17

(日) (同) (三) (三)

References II

- Michael Barbaro and Tom Zeller A Face Is Exposed for AOL Searcher No. 4417749 The New York Times
- S. Menon, S. Sarkar, and S. Mukherjee (2005)
 Maximizing accuracy of shared databases when concealing sensitive patterns
 Information Systems Research, 16(3):256-270

 E. Leloglu, T. Ayav, and B. Ergenc (2014)
 Coefficient-based exact approach for frequent itemset hiding eKNOW 2014: The Sixth International Conference on Information, Process, and Knowledge Management, 124-130

(口) (同) (三) (三)

References III

A. Gkoulalas-Divanis and V. S. Verykios (2009) Hiding sensitive knowledge without side effects Knowledge Information Systems, 20(3):263-299

🔋 V. S. Verykios (2013)

Association rule hiding methods WIREs Data Mining Knowledge Discovery, 3(1):28-36

Frequent Itemset Mining Dataset Repository http://fimi.ua.ac.be/data/

(日) (同) (日) (日)

References IV

 Kohavi, Ron, Brodley, Carla E., Frasca, Brian, Mason, Llew and Zheng, Zijian (2000)
 KDD-Cup 2000 Organizers' Report: Peeling the Onion SIGKDD Explor. Newsl., 2(2):86-93

Bayardo, Jr., Roberto J. (1998)
 Efficiently Mining Long Patterns from Databases
 SIGMOD, 27(2):85-93

IBM ILOG CPLEX User's Manual v12.6

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

- 4 同 ト 4 ヨ ト 4 ヨ ト