
Programming Safe Agents in Blueprint

Alex Muscar
University of Craiova

Programmers are craftsmen, and,
as such, they are only as productive

as theirs tools allow them to be

Introduction

Agent Oriented
Programming

• has been around for 20+ years

• was intended as a higher level alternative to OOP

• many regarded it as “a revolution in software”

Agent Oriented
Programming

• has failed to gain wide traction

• is regarded as an experimentation tool for AI

• the community lacks focus

Blueprint

Premise: There is still place for a solution that is both high-level, yet
practical

Design goals: an agent oriented programming language, focusing on
concurrency, static safety, ease of use and extensibility

Defining terms

agents: computational entities that (i) have their
own thread of control and can decide autonomously
if and when to perform a given action; and (ii)
communicate with other agents by asynchronous
message passing

Defining terms

concurrency: the composition of independently
executing entities

Defining terms

consistency: data consistency*, rather than logical
consistency

*The ‘A’ in A.C.I.D.

Defining terms

scalability: (i) the ability of the runtime to
gracefully handle a growing number of agents
executing concurrently; and (ii) the ability of the
language to gracefully handle growing code bases

Background and
Motivation

• developing the prototype of a dynamic negotiation
mechanism in Jason

• teaching agent technologies to undergraduate students
using JADE

Why another language?

Blueprint’s development was motivated by my experience:

Jason’s advantages

• high level

• domain oriented

• most popular AOPL

Jason’s advantages

• active community

• regularly updated

• good documentation

Jason’s disadvantages

• limited in scope

• latently typed

• exotic syntax

Jason’s disadvantages

• slow interpreter

• not scalable

JADE’s advantages

• manifestly typed

• scalable

• most popular agent framework

JADE’s disadvantages

• lacks expressivity

• syntactic noise

2.2. COMPARISON 13

Jason JADE

Concurrency support G# G#
Language scalability #
Safety #
Expressivity #
Extensibility G#

Table 2.1: Comparing agent languages

Virtual Machine (JVM) or CLR), and benefit from the already existing libraries.

This is the route chosen by Jason, which runs on the JVM. But there is a tension

between Jason’s high level semantics and JVM’s lower-level features so developers

using Jason frequently need to use an “escape hatch”: they need to drop into Java

to develop parts of their agent system. This is a dangerous route since the developer

might be tempted to use the path of least resistance, and develop the better part of

the agent system in Java (this issue is also covered in [75]). One of the goals of

BLUEPRINT is to make the native libraries easy to access from the language itself,

and the language expressive enough to make their use comfortable.

These criteria will be the same ones that guide BLUEPRINT’s design.

Table 2.1 shows the comparison of Jason and JADE according to the above criteria.

Backing up the intuition built by 2.1, JADE has full ratings in the criteria related to safety

and language scalability. This is expected since it benefits from the years of efforts pour

into the Java programming language and the JVM. Conversely, Jason ranks fairly low

on safety and scalability related issues, but it shines in expressivity, being very domain

oriented. This is indeed a point where JADE suffers, being overly verbose.

Comparing Jason and JADE

Expressivity

Safety

Jason

JADE

Expressivity

Safety

Jason

JADE Blueprint

Monadic Foundations
for Concurrent Agents

Monads

• originated in category theory

• structures that represent computation

• usually composed of a type constructor and two operations

Why monads?

• F#’s computation expressions are syntactic sugar for
monads

• they are an elegant way of expressing the composition of
concurrent computations

• they have been thoroughly studied

A closer look at
concurrent computations

• they start now and they will finish sometime in the future

• we need to react when a concurrent computation ends

• we need to combine concurrently running computations

A closer look at
concurrent computations
• the reaction to the completion of a concurrent

computation is its continuation

• look at plans as being split in two: the actions ran thus far
and the actions that are still to be executed

• a promise that a set of actions will get executed at some
point

• this hints at a way of composing plans

The Promise monad

Appendix A

The Definition of the Promise Monad

A promise for a value of type – is a function which receives a handler that can be called

with the value of the promise, and it produces a value of type —1. The type constructor

for the Promise monad, M
promise

, is defined as:

M
promise

= (– æ —) æ —

The unit operation takes a value and returns a promise that will pass the value as an

argument to the promise’s handler2:

unit
promise

= ⁄x. ⁄k. k x (A.1)

The bind operation takes a promise and a continuation of the promise, and returns a

promise that will invoke the continuation in a context where the result of the promise is

available:
1We use the standard notation for function types, where – æ — is the type of a function taking an

argument of type – and return a value of type —.
2We use the standard notation of lambda calculus [22]—functions are introduced by the ⁄ operator

which binds a variable in the scope of its body expression, e.g. ⁄var. body. Function application is

denoted by juxtaposition. We use parenthesis for clarity.

113

A promise for a value of type α is a function which receives a
handler that can be called with the value of the promise, and it
produces a value of type β. The type constructor for the Promise
monad, Mpromise, is defined as:

The Promise monad

The unit operation takes a value and returns a promise that will
pass the value as an argument to the promise’s handler:
!

Appendix A

The Definition of the Promise Monad

A promise for a value of type – is a function which receives a handler that can be called

with the value of the promise, and it produces a value of type —1. The type constructor

for the Promise monad, M
promise

, is defined as:

M
promise

= (– æ —) æ —

The unit operation takes a value and returns a promise that will pass the value as an

argument to the promise’s handler2:

unit
promise

= ⁄x. ⁄k. k x (A.1)

The bind operation takes a promise and a continuation of the promise, and returns a

promise that will invoke the continuation in a context where the result of the promise is

available:
1We use the standard notation for function types, where – æ — is the type of a function taking an

argument of type – and return a value of type —.
2We use the standard notation of lambda calculus [22]—functions are introduced by the ⁄ operator

which binds a variable in the scope of its body expression, e.g. ⁄var. body. Function application is

denoted by juxtaposition. We use parenthesis for clarity.

113

132 APPENDIX A. THE DEFINITION OF THE PROMISE MONAD

bind
promise

= ⁄m. ⁄k. ⁄c. run m (⁄x. run (k x) c) (A.2)

where run : M
promise

– æ (– æ —) æ — is a function that executes a promise

with the given callback—in our case it is equivalent to function application.

The Promise monad

The bind operation takes a promise and a continuation of the
promise, and returns a promise that will invoke the continuation in
a context where the result of the promise is available:

where run is a function that executes a promise with the given callback

Conclusions

• the Promise monad is actually the well known CPS monad

• we can use monads to structure concurrent plans

• we can employ the same strategy as F#: use monads
internally and perform code rewrite

The Blueprint Language

Blueprint is meant to be

• high level (e.g. agents, plans)

• safe (e.g. static types, channel protocols)

• easy to learn (e.g. C-like syntax)

• easy to use for concurrent applications

From revolution to
evolution

• take a step back and look at agents as an evolution of the
OOP and the Actors model

• concurrently executing agents with reactive behaviours

• respects Shoham's definition of AOP as a specialisation of
OOP in the sense of the Actor model

The road to Blueprint

• agents are reactive and autonomous entities

• send messages asynchronously to mitigate deadlocks

• react to incoming events serially in order to avoid race
conditions

• use monads to structure compose computations

Communication channels

• agents use bidirectional and asymmetric channels to
exchange messages

• messages sends are asynchronous (i.e. non-blocking),
while receives are synchronous (i.e. blocking)

• preserve message ordering

• they belong to exactly one agent

• they are introduced by the chan keyword

Channel endpoints

• an exporting endpoint, and an importing endpoint

• the exporting endpoint is used by the owner of the
channel, while the importing endpoint can be handed off
to other agents

• each endpoint has an ordered, unbounded message queue

• channel endpoints are first order entities (i.e. they can be
passed as arguments and returned as values)

agent Account(init: int, impChan: BankAccount.Imp) {
 chan c = BankAccount.make()
 bel balance = init

 plan Start() {
 val msg = <-c.Exp.operation;
 match msg {
 case deposit(amount):
 val currentBalance = balance.take()
 balance.put(currentBalance + amount)
 case withdraw(amount):
 val currentBalance = balance.take()
 balance.put(currentBalance - amount)
 case transferTo(acc, amount):
 acc <- deposit(amount);
 val currentBalance = balance.take()
 balance.put(currentBalance - amount)
 }
 }
}

agent Account(init: int, impChan: BankAccount.Imp) {
 chan c = BankAccount.make()
 bel balance = init

 plan Start() {
 val msg = <-c.Exp.operation;
 match msg {
 case deposit(amount):
 val currentBalance = balance.take()
 balance.put(currentBalance + amount)
 case withdraw(amount):
 val currentBalance = balance.take()
 balance.put(currentBalance - amount)
 case transferTo(acc, amount):
 acc <- deposit(amount);
 val currentBalance = balance.take()
 balance.put(currentBalance - amount)
 }
 }
}

agent Account(init: int, impChan: BankAccount.Imp) {
 chan c = BankAccount.make()
 bel balance = init

 plan Start() {
 val msg = <-c.Exp.operation;
 match msg {
 case deposit(amount):
 val currentBalance = balance.take()
 balance.put(currentBalance + amount)
 case withdraw(amount):
 val currentBalance = balance.take()
 balance.put(currentBalance - amount)
 case transferTo(acc, amount):
 acc <- deposit(amount);
 val currentBalance = balance.take()
 balance.put(currentBalance - amount)
 }
 }
}

Channel protocols

• declarative mechanisms of enforcing proper message
exchange between agents

• specify the flow of the data between the communicating
entities (i.e. the order, and direction in which messages
are sent)

• introduced by the proto keyword

proto ThreadProto {
 start: in nextChan(next: ThreadProto.Imp@loop) >> loop
 loop: in token(value: Token) >> loop or end
}

proto ThreadProto {
 start: in nextChan(next: ThreadProto.Imp@loop) >> loop
 loop: in token(value: Token) >> loop or end
}

proto ThreadProto {
 start: in nextChan(next: ThreadProto.Imp@loop) >> loop
 loop: in token(value: Token) >> loop or end
}

proto ThreadProto {
 start: in nextChan(next: ThreadProto.Imp@loop) >> loop
 loop: in token(value: Token) >> loop or end
}

proto ThreadProto {
 start: in nextChan(next: ThreadProto.Imp@loop) >> loop
 loop: in token(value: Token) >> loop or end
}

proto ThreadProto {
 start: in nextChan(next: ThreadProto.Imp@loop) >> loop
 loop: in token(value: Token) >> loop or end
}

proto ThreadProto {
 start: in nextChan(next: ThreadProto.Imp@loop) >> loop
 loop: in token(value: Token) >> loop or end
}

proto ThreadProto {
 start: in nextChan(next: ThreadProto.Imp@loop) >> loop
 loop: in token(value: Token) >> loop or end
}

Channel protocols

• protocols are designed from the perspective of the agent
initiating the interaction (i.e. the exporting endpoint)

• there is no need to specify the dual protocol since it can be
automatically derived by swapping direction specifiers

Concurrency and beliefs

• channels and protocols are a good way to control inter-
agent concurrency

• we need a way to control intra-agent concurrency as well

• use synchronised mutable variables (mvars)

mvars
• one-place buffers which can be in one of the two states: empty or

full

• two basic operations: take, and put

• calling take on a full mvar immediately returns the value and
marks the mvar as empty

• If a take call is issued on an empty mvar, the calling thread of
execution is blocked until the mvar becomes full

• the semantics of the put operations are similar

mvars

• the locks are not directly manipulated by the
programmer, instead this is the job of the underlying
implementation

• given the relatively low level, blocking nature of mvars
(when compared to message passing), the risk of
deadlock is still present

Beliefs as mvars

• Blueprint implements all beliefs as mvars

• beliefs are introduced by the bel keyword

• beliefs have two methods: take() and put()

Formal model sketch

• the semantics is defined via a CPS transform to a core
language

• the core language is a small functional language

80 CHAPTER 5. THE BLUEPRINT LANGUAGE

Proto fi ::= proto id {‡0 . . . ‡
n

} Protocol definition

State ‡ ::= id : µ ∫ id Protocol state

MsgFlowExp µ ::= µ0 � . . . � µ
n

Message flow expression

MsgExp µ ::= in id(id0 . . . id
n

) Message receive expression

TargetStates ‡ ::= id0 or . . . or id
n

Target states

::= out id(id0 . . . id
n

) Message send expression

Plan p ::= plan id(p0 . . . p
n

) {e} Plan definition

Meth m ::= def id(p0 . . . p
n

) {e} Method definition

Stmt s ::= val id = e Value binding

::= var id = e Variable binding

::= e0; . . . ; e
n

Sequence

Exp e ::= n Numeral

true Boolean literal

false Boolean literal

”s” Literal

id Reference

e.id Field reference

e[i] Array element reference

e1 op e2 Binary operator

e(e0 . . . e
n

) Function call

� e Channel receive

e1 � e2 Channel send

e1 := e2 Assignment

‘ Empty expression

Figure 5.2: Abstract syntax of the source language.

5.5. FORMAL MODEL SKETCH 81

Jplan id (p0 . . . p
n

) { e }K © let id = ⁄ (p0 . . . p
n

) . ⁄ Ÿ . JeK

Je
plan

()K © ⁄ Ÿ . asyncstart (e); Ÿ()

Je1; e2K © ⁄ Ÿ . Je1K(⁄ () . Je2K Ÿ)

JaK © ⁄ Ÿ . a; Ÿ()

Jid := take(e)K © ⁄ Ÿ . suspend (e, ⁄ () . set(id, take(e)); Ÿ())

Jput(id, e)K © ⁄ Ÿ . put(id, e); signal (id); Ÿ()

Jid := recv(e)K © ⁄ Ÿ . suspend (id, ⁄ () . set(id, take(id)); Ÿ())

Figure 5.3: CPS transform to core language.

STEP: ({e} fi A, Q, P) ; ({e

Õ} fi A, Q, P) , if e ‘æ e

Õ

SUSPEND: ({ suspend (id, e)} fi A, Q, P) ; (A, Q, P fi {id æ e})

SCHEDULE: (A, {e} fi Q, P) ; (A fi {e}, Q, P)

SIGNAL: ({ signal (id)} fi A, Q, P fi {id æ e}) ; (A, Q fi {e}, P)

ASYNC-START: ({ asyncstart (e)} fi A, Q, P) ; (A, Q fi {e}, P)

Figure 5.4: Asynchronous semantics.

5.5. FORMAL MODEL SKETCH 81

Jplan id (p0 . . . p
n

) { e }K © let id = ⁄ (p0 . . . p
n

) . ⁄ Ÿ . JeK

Je
plan

()K © ⁄ Ÿ . asyncstart (e); Ÿ()

Je1; e2K © ⁄ Ÿ . Je1K(⁄ () . Je2K Ÿ)

JaK © ⁄ Ÿ . a; Ÿ()

Jid := take(e)K © ⁄ Ÿ . suspend (e, ⁄ () . set(id, take(e)); Ÿ())

Jput(id, e)K © ⁄ Ÿ . put(id, e); signal (id); Ÿ()

Jid := recv(e)K © ⁄ Ÿ . suspend (id, ⁄ () . set(id, take(id)); Ÿ())

Figure 5.3: CPS transform to core language.

STEP: ({e} fi A, Q, P) ; ({e

Õ} fi A, Q, P) , if e ‘æ e

Õ

SUSPEND: ({ suspend (id, e)} fi A, Q, P) ; (A, Q, P fi {id æ e})

SCHEDULE: (A, {e} fi Q, P) ; (A fi {e}, Q, P)

SIGNAL: ({ signal (id)} fi A, Q, P fi {id æ e}) ; (A, Q fi {e}, P)

ASYNC-START: ({ asyncstart (e)} fi A, Q, P) ; (A, Q fi {e}, P)

Figure 5.4: Asynchronous semantics.

Implementation
considerations

• Blueprint is built on top of the CLR framework

• The CLR contains a performant Virtual Machine with a Just
In-time Compiler and a Garbage Collector

• we use the thread-pool pattern for scheduling agent
reactions to incoming messages

5.6. IMPLEMENTATION DETAILS 83

and a Garbage Collector (GC). The development of a VM that can be on par with the

one in .NET or Mono would be a serious undertaking, and is out of the purpose of this

thesis. As we will see in chapter 6, the performance of programs written for both .NET

and Mono is on par with that of programs running in top of the JVM.

Figure 5.5: The Common Language Runtime high level overview.

Figure 5.5 shows a high level overview of the CLR4. Languages targeting the CLR

translate the source code to an intermediate representation called Common Intermediate

Language (CIL), which is a stack based byte code, very similar to the JVM byte code.

CIL code is translated by the JIT to native code an executed. This approach makes

the compiler easier to write, because CIL is higher level than machine code, and that

code produced by multiple languages targeting the CLR can seamlessly interoperate, e.g.

BLUEPRINT agents can use libraries written in C#.

4This image is a freely licensed media file from the Wikimedia Commons.

The thread-pool pattern

• a model where a (possibly fixed) number of threads—
called worker threads—is created in order to execute
waiting tasks—usually stored in a queue

• a worker thread requests the next pending task, and if
one is available it runs it to completion

• the thread may sleep or it may request another task once
the current task has finished

5.6. IMPLEMENTATION DETAILS 85

Figure 5.6: An example of a simple thread-pool with waiting tasks (blue), running tasks

(red), and completed tasks (yellow).

(IO-bound tasks). In such situations, the thread-pool provides a mechanism to put the

executing task in a special “waiting” queue, and free the worker thread to service another

queued task. Waiting tasks are rescheduled when the event they are waiting for occurs.

Mapping plans to tasks

In order to allow the asynchronous execution of plans, we will employ a scheme similar

to that presented in [97]. The essential aspects of the approach are illustrated in figure 5.3:

we will perform a rewrite of the source code in CPS [97], and use a thread-pool for

scheduling reactions to pending events, e.g. communication.

This model has proven quite effective: it has been employed by the F# programming

language since 2007, and recently C# has adopted a similar solution. Instead of forcing

the developer to write the code in explicit CPS, which is what Jason does by requiring

separate event handlers for each message received, we will let the compiler take care of

the plumbing.

The thread-pool pattern

• it scales well for I/O-bound tasks

• the performance degrades when it has a lot of CPU-bound
tasks

Future Directions

• investigate code reuse (most probably via some form of
inheritance of prototypic delegation)

• investigate an extension of the concurrency model, based
on the Join calculus

• give a full formal account of the language

• define a mechanism similar to channel protocols to
characterise agent environments

• further investigate the object capability model in the
context of security in AOP

• develop a JVM backend for Blueprint

• develop tooling for the language (i.e. plugins for popular
IDEs)

Thank you. Questions?

