Programming Safe Agents in Blueprint

Alex Muscar
University of Craiova

CRAIOVA

WiMS 14

Programmers are craftsmen, and,
as such, they are only as productive
as theirs tools allow them to be

Introduction

Agent Oriented

Programming

e has been around for 20+ years
e wasintended as a higher level alternative to O0P

e many regarded it as“a revolution in software”

Agent Oriented

Programming

e has failed to gain wide traction
e isregarded as an experimentation tool for Al

o the community lacks focus

Blueprint

Premise: There is still place for a solution that is both high-level, yet
practical

Design goals: an agent oriented programming language, focusing on
concurrency, static safety, ease of use and extensibility

Defining terms

agents: computational entities that (i) have their
own thread of control and can decide autonomously
if and when to perform a given action; and (ii)
communicate with other agents by asynchronous
message passing

Defining terms

concurrency: the composition of independently
executing entities

Defining terms

consistency: data consistency®, rather than logical
consistency

“The’A'in A.C.L.D.

Defining terms

scalability: (i) the ability of the runtime to
gracefully handle a growing number of agents
executing concurrently; and (ii) the ability of the
language to gracefully handle growing code bases

Background and
Motivation

Why another language’

Blueprint's development was motivated by my experience:

o developing the prototype of a dynamic negotiation
mechanism in Jason

o teaching agent technologies to undergraduate students
using JADE

Jason’s advantages

e high level
e domain oriented

e most popular AOPL

Jason’s advantages

e active community
o reqularly updated

e (ood documentation

Jason’s disadvantages

e [imited in scope
o |atently typed

e exotic syntax

Jason’s disadvantages

o slow interpreter

e notscalable

JADE’s advantages

o manifestly typed
e Scalable

e most popular agent framework

JADE’s disadvantages

o lacks expressivity

e syntactic noise

Jason | JADE
Concurrency support O O
Language scalability O ®
Safety O ®
Expressivity ® O
Extensibility O ®

Comparing Jason and JADE

JADE

Safety

Jason

Expressivity

JADE Blueprint

Safety

Jason

Expressivity

Monadic Foundations
for Concurrent Agents

Monads

e originated in category theory
e structures that represent computation

e usually composed of a type constructor and two operations

Why monads?

F#'s computation expressions are syntactic sugar for
monads

they are an elegant way of expressing the composition of
concurrent computations

they have been thoroughly studied

A closer look at
concurrent computations

o they start now and they will finish sometime in the future
e we need to react when a concurrent computation ends

e Wwe need to combine concurrently running computations

A closer look at

concurrent computations

the reaction to the completion of a concurrent
computation Is its continuation

look at plans as being split in two: the actions ran thus far
and the actions that are still to be executed

a promise that a set of actions will get executed at some
point

this hints at a way of composing plans

The Promise monad

A promise for a value of type a is a function which receives a
handler that can be called with the value of the promise, and it

produces a value of type B. The type constructor for the Promise
monad, Mpromise, iS deﬁHEd dS.

Mpr()mise — (Oé —7 5) — 6

The Promise monad

The unit operation takes a value and returns a promise that will
pass the value as an argument to the promise’s handler:

UNpromise — AL. AK. k@

The Promise monad

The bind operation takes a promise and a continuation of the
promise, and returns a promise that will invoke the continuation in
a context where the result of the promise is available:

bindyromise = Am. Ak. Ac. run m (Ax. run (k z) c)

where run is a function that executes a promise with the given callback

Conclusions

the Promise monad is actually the well known (P$ monad
we can use monads to structure concurrent plans

we can employ the same strateqy as F#: use monads
internally and perform code rewrite

The Blueprint Language

Blueprint i1s meant to be

e highlevel (e.qg. agents, plans)
o safe (e.g. static types, channel protocols)
o easy tolearn (e.q. C-like syntax)

e easy to use for concurrent applications

From revolution to
evolution

take a step back and look at agents as an evolution of the
0OP and the Actors model

concurrently executing agents with reactive behaviours

respects Shoham's definition of AOP as a specialisation of
0OP in the sense of the Actor model

The road to Blueprint

agents are reactive and autonomous entities
send messages asynchronously to mitigate deadlocks

react to incoming events serially in order to avoid race
conditions

use monads to structure compose computations

Communication channels

e agents use bidirectional and asymmetric channels to
exchange messages

e messages sends are asynchronous (i.e. non-blocking),
while receives are synchronous (i.e. blocking)

e preserve message ordering

o they belong to exactly one agent

e theyareintroduced by the chan keyword

Channel endpoints

an exporting endpoint, and an importing endpoint

the exporting endpoint is used by the owner of the
channel, while the importing endpoint can be handed off
to other agents

each endpoint has an ordered, unbounded message queue

channel endpoints are first order entities (i.e. they can be
passed as arguments and returned as values)

agent Account(init: int, impChan: BankAccount.Imp) {
chan c¢ = BankAccount.make()
bel balance = init

plan Start() {
val msg = <—-c.Exp.operation;
match msg {
case deposit(amount):
val currentBalance = balance.take()
balance.put(currentBalance + amount)
case withdraw(amount):
val currentBalance = balance.take()
balance.put(currentBalance - amount)
case transferTo(acc, amount):
acc <— deposit(amount);
val currentBalance = balance.take()
balance.put(currentBalance — amount)

agent Account(init: int, impChan: BankAccount.Imp) {
chan ¢ = BankAccount.make()
bel balance = init

plan Start() {
val msg = <—-c.Exp.operation;
match msg {
case deposit(amount):
val currentBalance = balance.take()
balance.put(currentBalance + amount)
case withdraw(amount):
val currentBalance = balance.take()
balance.put(currentBalance - amount)
case transferTo(acc, amount):
acc <— deposit(amount);
val currentBalance = balance.take()
balance.put(currentBalance — amount)

agent Account(init: int, impChan: BankAccount.Imp) {
chan c¢ = BankAccount.make()
bel balance = init

plan Start() {
val msg = <-c.Exp.operation;
match msg {
case deposit(amount):
val currentBalance = balance.take()
balance.put(currentBalance + amount)
case withdraw(amount):
val currentBalance = balance.take()
balance.put(currentBalance - amount)
case transferTo(acc, amount):
acc <— deposit(amount);
val currentBalance = balance.take()
balance.put(currentBalance — amount)

Channel protocols

declarative mechanisms of enforcing proper message
exchange between agents

specify the flow of the data between the communicating
entities (i.e. the order, and direction in which messages
are sent)

introduced by the proto keyword

proto ThreadProto {
start: in nextChan(next: ThreadProto.Imp@loop) >> loop
loop: in token(value: Token) >> loop or end

proto ThreadProto {
start: in nextChan(next: ThreadProto.Imp@loop) >> loop
loop: in token(value: Token) >> loop or end

proto ThreadProto {
start: in nextChan(next: ThreadProto.Imp@loop) >> loop
loop: in token(value: Token) >> loop or end

proto ThreadProto {
start: in nextChan(next: ThreadProto.Imp@loop) >> loop
loop: in token(value: Token) >> loop or end

proto ThreadProto {
start: in nextChan(next: ThreadProto.Imp@loop) >> loop
loop: in token(value: Token) >> loop or end

proto ThreadProto {
start: in nextChan(next: ThreadProto.Imp@loop) >> loop
loop: in token(value: Token) >> loop or end

proto ThreadProto {
start: in nextChan(next: ThreadProto.Imp@loop) =>> loop
loop: in token(value: Token) => loop or end

proto ThreadProto {
start: in nextChan(next: ThreadProto.Imp@loop) >> loop
loop: in token(value: Token) >> loop or end

Channel protocols

o protocols are designed from the perspective of the agent
initiating the interaction (i.e. the exporting endpoint)

o thereis no need to specify the dual protocol since it can be
automatically derived by swapping direction specifiers

Concurrency and beliefs

e channels and protocols are a good way to control inter-
agent concurrency

o Wwe need a way to control intra-agent concurrency as well

e use synchronised mutable variables (mvars)

mvars

one-place buffers which can be in one of the two states: empty or
full

two basic operations: take, and put

calling take on a full mvar immediately returns the value and
marks the mvar as empty

If a take call is issued on an empty mvar, the calling thread of
execution is blocked until the mvar becomes full

the semantics of the put operations are similar

mvars

o thelocks are not directly manipulated by the

programmer, instead this is the job of the underlying
implementation

e given the relatively low level, blocking nature of mvars

(when compared to message passing), the risk of
deadlock is still present

Beliets as mvars

o Blueprintimplements all beliefs as mvars
o beliefs are introduced by the bel keyword

o Deliefs have two methods: take() and put()

Formal model sketch

e thesemantics is defined via a CPS transform to a core
language

o the core language is a small functional language

Proto 7 = protoid{og...on} Protocol definition

State o = dd:i @ > id Protocol state
MsgFlowExp o 1= po—...—= Up Message flow expression
MsgExp 1 = inid(idy .. .idy) Message receive expression
TargetStates ¢ 1= idypor ... orid, Target states

= out id(idy .. .idy) Message send expression

Plan p = planid(pg...pn) {€} Plan definition
Meth m = defid(po...pn) {e} Method definition
Stmt s = valid=e Value binding
= varid=e Variable binding
= €ep;...;€En Sequence
Exp € = n Numeral
true Boolean literal
false Boolean literal
7s” Literal
vd Reference
e.id Field reference
eli Array element reference
€1 op €2 Binary operator
e(eg...en) Function call
—e€ Channel receive
e1 < €9 Channel send
e1 :=e9 Assignment

Empty expression

letid=A(po...pn) .- Ak.[€]

[olanid (po...pn) { € }]

lepian()] = Ak .asynestart (e); ()
levsea] = Ar.[ea(A() - [e2])
[a] = Mk.a;k()
lid :=take(e)] = Mk .suspend (e, (). set(id, take(e));k())

A\ k. put(id,e); signal (id); k()
A\ k . suspend (id, A () . set(id, take(id)); k())

).
[put(id, e)]
).

[id := recv(e)]

STEP:
SUSPEND:
SCHEDULE:

SIGNAL:

ASYNC-START:

({e}ud, QP

({ suspend (id,e)} UA,Q, P

(A {e}u@, P

({ signal (id)} UA,Q,PU{id — e}
({ asynestart (e¢)}UA,Q, P

)
)
)
)
)

({e'}UA,Q, P)
(A,Q,PU{id — e})
(AU{e},Q, P)
(A, QU {e}, P)
(A, QU {e}, P)

ciferé

Implementation
considerations

Blueprint is built on top of the CLR framework

The CLR contains a performant Virtual Machine with a Just
In-time Compiler and a Garbage Collector

we use the thread-pool pattern for scheduling agent
reactions to incoming messages

Source code Bytecode Native code
C# compiler
C# >
VB.NET compiler CLR
VB.NET CIL code P> Native code
Other .NET Other compiler
language >
| |
Compile time Runtime

The thread-pool pattern

o amodel where a (possibly fixed) number of threads—
called worker threads—is created in order to execute
waiting tasks—usually stored in a queue

o aworker thread requests the next pending task, and if
one is available it runs it to completion

o the thread may sleep or it may request another task once
the current task has finished

Task Queue

i (e)[[9)[¢)| &)@

Completed Tasks
- (@O «— O <—|

The thread-pool pattern

o itscaleswell for I/0-bound tasks

e the performance degrades when it has a lot of CPU-bound
tasks

Future Directions

investigate code reuse (most probably via some form of
inheritance of prototypic delegation)

investigate an extension of the concurrency model, based
on the Join calculus

give a full formal account of the language

define a mechanism similar to channel protocols to
characterise agent environments

further investigate the object capability model in the
context of security in AOP

develop a JVM backend for Blueprint

develop tooling for the language (i.e. plugins for popular
IDEs)

Thank you. Questions?

