used wingszenterung

Web Science - Investigating the Future of Information and Communication

WHEN IN DOUBT ASK THE CROWD

EMPLOYING CROWDSOURCING FOR ACTIVE LEARNING

Mihai Georgescu, Dang Duc Pham, Claudiu S Firan, Ujwal Gadiraju, Wolfgang Nejdl

> L3S Research Center Leibniz Universität Hannover

Introduction

- Integrated framework for active learning using crowd assigned labels, gathered on demand as training data for an automatic method
- Enable an automatic method and human labelers to work together towards improving their performance
- Identify the major challenges that can arise when deploying such a framework
- Provide extensive experiments using various automatic methods that learn to perform a task by exploiting the wisdom of the crowds

Crowdsourcing

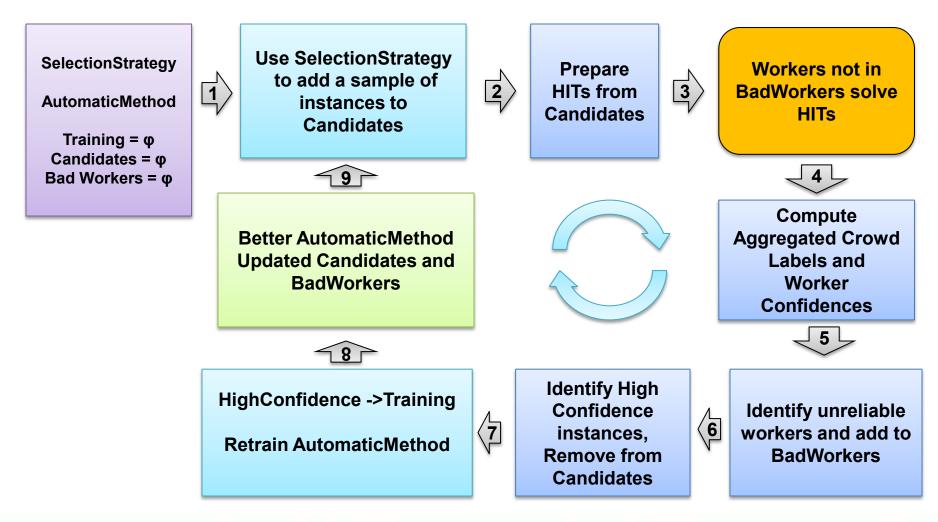
- Crowdsourcing is the act of taking a job traditionally performed by a designated agent (usually an employee) and outsourcing it to an undefined, generally large group of people in the form of an open call.¹
- The crowd workers are motivated by a small financial incentive
- Usually done via microtask platforms such as Amazon's Mechanical Turk or Crowdflower
- Requester posts HITs that are solved by workers for a financial reward
- Unknown workers with various expertise can replace domain experts
- Advantages: cost effective, workers availability and diversity
- Disadvantages: questionable quality of work

1) crowdsourcing.typepad.com

Automatic Labels vs. Crowd Labels

- Gather labels from the crowd in an active learning manner, for training an automatic method
- For each instance gather multiple labels and aggregate them
- Crowd Labels (CL) Binary labels, aggregation of labels from all workers
- Crowd Soft Labels (CSL)
 - [0,1] value for the confidence we have in the crowd label
 - Can incorporate the notion of worker confidence (reliability)
- Automatic Labels(AL) Binary label produced by the Automatic Method
- Automatic Soft Labels(ASL)
 - [0,1] value for the confidence of the automatic label
 - Used by aSelection Strategy for finding instances for which labels are needed to improve the Automatic Method
- Goal: Have AL as close as possible to CL

Continuous Active Learning Process



Specific task: deduplication of scientific publications

- Objective: Automatic deduplication of scientific publications
- Solution: use the proposed method and let an automatic algorithm actively learn from the crowd how to deduplicate
- Considered instances: pairs of publications described by metadata
- List of fields a publication might have: Title, Subtitle, By, In, Type, Publisher, Organization, Abstract
- Labels: a pair contains duplicate or not-duplicate publications

Automatic Methods

- Duplicates Scorer
 - Produces an ASL based on an epsilon-adjusted mean of field similarities
 - Using as parameters the weights of the fields
 - Final assignment comes from comparing the ASL to a threshold

- Classifiers:
 - ASL is the classifier confidence in the class assignment
 - Naïve Bayes, Decision Tree or SVM
 - Features: Similarities between fields (Needleman-Wunch or Jaccard)
 - Each instance (pair of publications) has 8 features

Learning from the crowd

- Automatic method provides an ASL, indicating confidence
- Use ASL to select instances according to a Selection Strategy
- Use all reliable labels (HighConfidence) to re-train
- DuplicatesScorer
 - Start with a common sense parameter choice
 - In each round when re-training, take into consideration the parameters learned in the previous round and used for the selection
- Classifiers
 - Start with a random sample
 - Re-training uses all the reliable acquired labels

Evaluation

- Dataset
- Inter-Agreement of labelers
- Performance of different Automatic Methods
- Resource Allocation per Active Learning Round
- Selection Strategy

Dataset

Pairs of publications from different data sources: DBLP, CiteSeer, BibSonomy,TibKat as in the Freesearch system (dblp.kbs.unihannover.de)

Ground Truth:

• 363 pairs labeled by 3 experts: 101 dupl, 262 non-dupl

Crowd Data

- includes ground truth
- 2070 pairs with at least 3 crowd labels
- 570 pairs with 7 crowd labels
- MV : 804 dupl, 1264 non-dupl

amazon mechanical turk

Artificial Artificial Intellig

Mechanical Turk Task

[Show Diff] [Full Text] Title: Comparing Heuristic, Evolutionary and Local Search Approaches to Scheduling

Authors: Soraya Rana, Adele E. Howe, L. Darrell, Whitley Keith Mathias Venue: Proceedings of the Third International Conference on Artificial Intelligence Planning Systems, Menlo Park, CA Publisher: The AAAI Press Year: 1996 Language: English Type: conference

Abstract: The choice of search algorithm can play a vital role in the success of a scheduling application. In this paper, we investigate the contribution of search algorithms in solving a real-world warehouse scheduling problem. We compare performance of three types of scheduling algorithms: heuristic, genetic algorithms and local search.

[Show Diff]

Title: Comparing Heuristic, Evolutionary and Local Search Approaches to Scheduling.

Authors: Soraya B. Rana, Adele E. Howe, L. Darrell Whitley, Keith E. Mathias Book: AIPS Pg. 174-181 [Contents] Year: 1996 Language: English Type: conference (inproceedings)

After carefully reviewing the publications metadata presented to you, how would you classify the 2 publications referred:

Judgment for publications pair:

o Duplicates

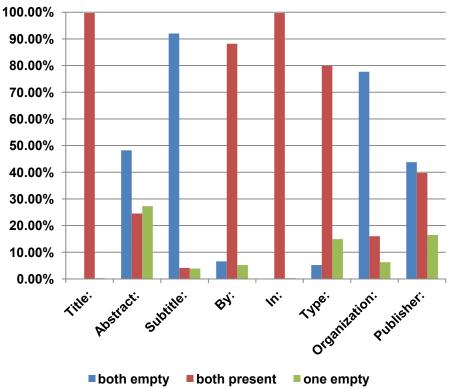
Not Duplicates

tortchungszentorun newarch

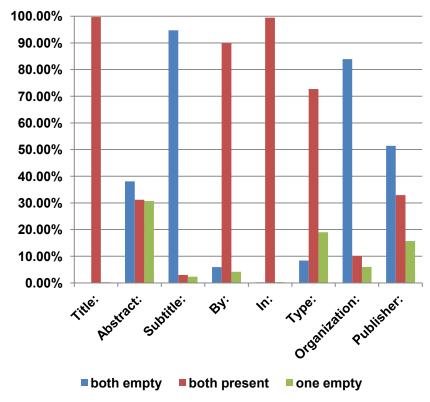
Web Science - Investigating the Future of Information and Communication

Dataset Statistics

Ground Truth Field Distribution



Crowd Data Field Distribution

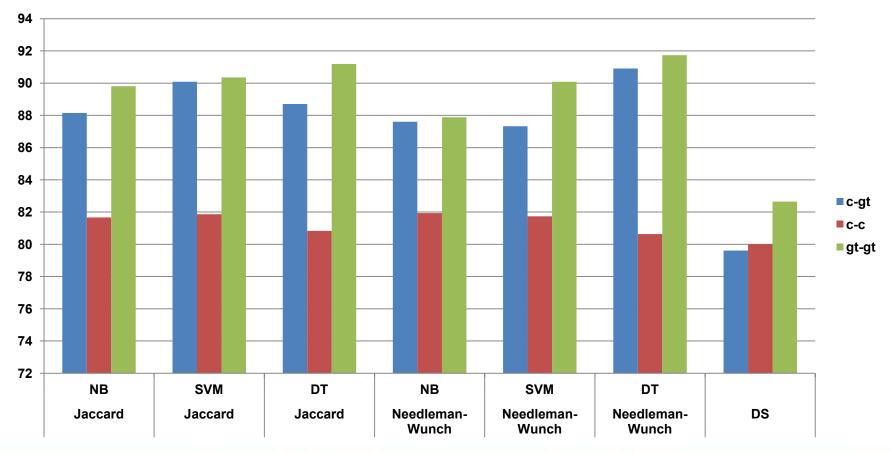


Agreement

Labels	Instances	Fleiss Kappa	Krippendorf Alpha	
Experts on ground Truth				
3	301	0.827	0.827	
Crowd on Ground Truth				
3	358	0.526	0.526	
4	358	0.526	0.526	
5	358	0.503	0.511	
6	337	0.478	0.499	
7	285	0.47	0.492	
Crowd on Training Data				
3	2064	0.282	0.282	
4	560	0.506	0.303	
5	560	0.499	0.319	
6	528	0.495	0.331	
7	425	0.477	0.338	

- Experts are more in agreement than crowd workers
- On the ground truth more than
 3 crowd workers leads to less
 agreement
- On the larger crowd data, 5 workers are better agreeing than
 3, but in less agreement than 7
- There is a limit after which introducing more workers is detrimental to the agreement

Accuracy of different methods



Attribute Selection

	Leave-1-out	Chi-squared	Info gain
title	0.73705	671.5102	0.35174
abstract	0.79656	156.4479	0.07633
subtitle	0.7905	0	0
by	0.78223	163.7297	0.08084
in	0.78815	89.1981	0.04172
type	0.78113	0	0
organization	0.79284	2.665	0.00124
publisher	0.79256	29.0746	0.01355

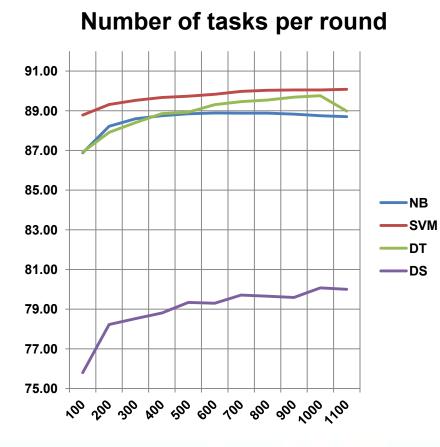
Best fields:

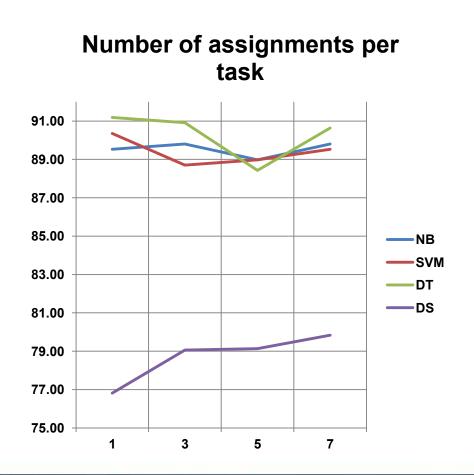
- Title, by, abstract, in for classifiers
- Title, by, type, in for DS

Matches the field distribution Fields for which values are present in both publications are more important torschungszentrum, in search

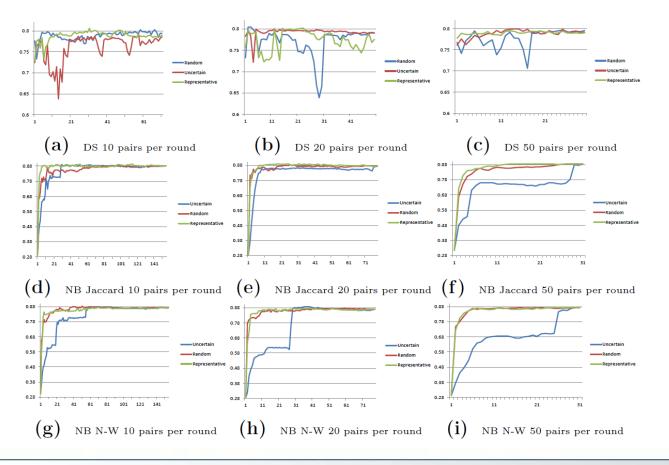
Web Science – Investigating the Future of Information and Communication

Resource Allocation





Selection Strategies



Selection Strategies

- Uncertainty performs worse than random or representative in our setting
- Representative performs similar to Random

 The representative strategy, taking into account items from the entire pool of unlabeled instances performs best

Conclusions

- Proposed a flexible framework for active learning from the crowd
- Tested on the particular scenario of duplicates detection
- When employing such a framework the choice of automatic method is very important as it guides the acquisition of new labels
- An optimal resource allocation schema has to be found, as after a certain point, spending extra will not provide better performance
- Such frameworks are sensible to the quality of crowd data, and analyzing the worker behavior is a prerequisite
- The Selection Strategy plays a crucial role; a representative strategy gives better results than one based on uncertainty

Future directions

• Direct extension: use the crowd to learn how to create a merged representation of the detected duplicates

- Experiment with other types of tasks and data
- Employ various crowd label aggregation strategies and worker reliability estimation
- Investigate the influence of agreement on performance
- In depth study on Selection Strategies

Thank you!

Q&A