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Introduction 

• Integrated framework for active learning using crowd 

assigned labels, gathered on demand as training data for an 

automatic method 

• Enable an automatic method and human labelers to work 

together towards improving their performance 

 

• Identify the major challenges that can arise when deploying 

such a framework 

 

• Provide extensive experiments using various automatic 

methods that learn to perform a task by exploiting the 

wisdom of the crowds 

 



Crowdsourcing 

• Crowdsourcing is the act of taking a job traditionally 

performed by a designated agent (usually an employee) 

and outsourcing it to an undefined, generally large 

group of people in the form of an open call.1 

 

• The crowd workers are motivated by a small financial incentive 

• Usually done via microtask platforms such as Amazon’s Mechanical 

Turk or Crowdflower 

• Requester posts HITs that are solved by workers for a financial reward 

• Unknown workers with various expertise can replace domain experts 

• Advantages: cost effective, workers availability and diversity 

• Disadvantages: questionable quality of work 

 1) crowdsourcing.typepad.com 



Automatic Labels vs. Crowd Labels 

• Gather labels from the crowd in an active learning manner, for training an 

automatic method 

• For each instance gather multiple labels and aggregate them 

 

• Crowd Labels (CL) - Binary labels, aggregation of labels from all workers 

• Crowd Soft Labels (CSL) 

•  [0,1] value for the confidence we have in the crowd label 

•  Can incorporate the notion of worker confidence (reliability) 

 

• Automatic Labels(AL) - Binary label produced by the Automatic Method 

• Automatic Soft Labels(ASL) 

•  [0,1] value for the confidence of the automatic label 

•  Used by aSelection Strategy for finding instances for which labels are needed to 

improve the Automatic Method 

 

• Goal: Have AL as close as possible to CL 
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Specific task: deduplication of scientific 

publications 

• Objective: Automatic deduplication of scientific publications 

• Solution: use the proposed method and let an automatic 

algorithm actively learn from the crowd how to deduplicate 

 

• Considered instances: pairs of publications described by 

metadata 

• List of fields a publication might have: Title, Subtitle, By, In, 

Type, Publisher, Organization, Abstract 

• Labels: a pair contains duplicate or not-duplicate 

publications 



Automatic Methods 

• Duplicates Scorer 

• Produces an ASL based on an epsilon-adjusted mean of field 

similarities 

• Using as parameters the weights of the fields 

• Final assignment comes from comparing the ASL to a threshold 

 

 

• Classifiers: 

• ASL is the classifier confidence in the class assignment 

• Naïve Bayes, Decision Tree or SVM 

• Features: Similarities between fields (Needleman-Wunch or Jaccard) 

• Each instance ( pair of publications) has 8 features 

 

 



Learning from the crowd 

• Automatic method provides an ASL, indicating confidence 

• Use ASL to select instances according to a Selection Strategy 

• Use all reliable labels (HighConfidence) to re-train 

 

• DuplicatesScorer 

• Start with a common sense parameter choice 

• In each round when re-training, take into consideration the 

parameters learned in the previous round and used for the selection 

• Classifiers 

• Start with a random sample 

• Re-training uses all the reliable acquired labels 



Evaluation 

 

• Dataset 

• Inter-Agreement of labelers 

• Performance of different Automatic Methods 

• Resource Allocation per Active Learning Round 

• Selection Strategy 



Dataset 

Pairs of publications from different data sources: DBLP, CiteSeer, 

BibSonomy,TibKat as in the Freesearch system (dblp.kbs.uni-

hannover.de) 

 

Ground Truth: 

•  363 pairs labeled by 3 experts: 101 dupl, 262 non-dupl 

  

Crowd Data 

•  includes ground truth 

•  2070 pairs with at least 3 crowd labels 

•  570 pairs with 7 crowd labels 

•  MV : 804 dupl, 1264 non-dupl 

  



Mechanical Turk Task 

 [Show Diff] [Full Text] 

Title: Comparing Heuristic, Evolutionary and Local Search Approaches to Scheduling 

 

Authors: Soraya Rana, Adele E. Howe, L. Darrell, Whitley Keith Mathias 

Venue: Proceedings of the Third International Conference on Artificial Intelligence Planning Systems, Menlo Park, CA  

Publisher: The AAAI Press 

Year: 1996 

Language: English 

Type: conference  

 

Abstract: The choice of search algorithm can play a vital role in the success of a scheduling application. In this paper, we investigate the 

contribution of search algorithms in solving a real-world warehouse scheduling problem. We compare performance of three types of 

scheduling algorithms: heuristic, genetic algorithms and local search. 

[Show Diff] 

Title: Comparing Heuristic, Evolutionary and Local Search Approaches to Scheduling. 

Authors: Soraya B. Rana, Adele E. Howe, L. Darrell Whitley, Keith E. Mathias 

Book: AIPS Pg. 174-181 [Contents] 

Year: 1996  

Language: English  

Type: conference (inproceedings)  

After carefully reviewing the publications metadata presented to you, how would you classify the 2 publications referred: 

 

Judgment for publications pair: 

o Duplicates 

o Not Duplicates 



Dataset Statistics 
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Agreement 

Labels Instances Fleiss Kappa 
Krippendorf 
Alpha 

Experts on ground Truth 

3 301 0.827 0.827 

Crowd on Ground Truth 

3 358 0.526 0.526 

4 358 0.526 0.526 

5 358 0.503 0.511 

6 337 0.478 0.499 

7 285 0.47 0.492 

Crowd on Training Data 

3 2064 0.282 0.282 

4 560 0.506 0.303 

5 560 0.499 0.319 

6 528 0.495 0.331 

7 425 0.477 0.338 

• Experts are more in agreement 

than crowd workers 

 

• On the ground truth  more than 

3 crowd workers leads to less 

agreement 

 

• On the larger crowd data, 5 

workers are better agreeing than 

3, but in less agreement than 7 

 

• There is a limit after which 

introducing more workers is 

detrimental to the agreement 



Accuracy of different methods 
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Attribute Selection 

  Leave-1-out Chi-squared Info gain 

title 0.73705 671.5102 0.35174 

abstract 0.79656 156.4479 0.07633 

subtitle 0.7905 0 0 

by 0.78223 163.7297 0.08084 

in 0.78815 89.1981 0.04172 

type 0.78113 0 0 

organization 0.79284 2.665 0.00124 

publisher 0.79256 29.0746 0.01355 

Best fields: 

• Title, by, abstract, in for classifiers 

• Title, by, type, in for DS 

 

Matches the field distribution  

Fields for which values are present in both publications are more 

important 

 



Resource Allocation 
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Selection Strategies 



Selection Strategies  

• Uncertainty performs worse than random or representative in 

our setting 

• Representative performs similar to Random 

 

 

• The representative strategy, taking into account items from 

the entire pool of unlabeled instances performs best 

 



Conclusions 

• Proposed a flexible framework for active learning from the crowd 

• Tested on the particular scenario of duplicates detection 

 

• When employing such a framework the choice of automatic method is 

very important as it guides the acquisition of new labels 

• An optimal resource allocation schema has to be found, as after a 

certain point, spending extra will not provide better performance 

• Such frameworks are sensible to the quality of crowd data, and 

analyzing the worker behavior is a prerequisite 

• The Selection Strategy plays a crucial role; a representative strategy 

gives better results than one based on uncertainty 



Future directions 

• Direct extension: use the crowd to learn how to create a 

merged representation of the detected duplicates 

 

 

• Experiment with other types of tasks and data 

• Employ various crowd label aggregation strategies and 

worker reliability estimation 

• Investigate the influence of agreement on performance 

• In depth study on Selection Strategies 

 

 



Thank you! 

Q&A 

 


